Suppr超能文献

通过消除细胞间变异性提高 中 - 肌醇的葡萄糖酸产量。

Enhancing glucaric acid production from -inositol in by eliminating cell-to-cell variation.

机构信息

State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China.

Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China.

出版信息

Appl Environ Microbiol. 2024 Jun 18;90(6):e0014924. doi: 10.1128/aem.00149-24. Epub 2024 May 29.

Abstract

Glucaric acid (GA) is a value-added chemical and can be used to manufacture food additives, anticancer drugs, and polymers. The non-genetic cell-to-cell variations in GA biosynthesis are naturally inherent, indicating the presence of both high- and low-performance cells in culture. Low-performance cells can lead to nutrient waste and inefficient production. Furthermore, -inositol oxygenase (MIOX) is a key rate-limiting enzyme with the problem of low stability and activity in GA production. Therefore, eliminating cell-to-cell variations and increasing MIOX stability can select high-performance cells and improve GA production. In this study, an GA bioselector was constructed based on GA biosensor and tetracycline efflux pump protein TetA to continuously select GA-efficient production strains. Additionally, the upper limit of the GA biosensor was improved to 40 g/L based on ribosome-binding site optimization, achieving efficient enrichment of GA high-performance cells. A small ubiquitin-like modifier (SUMO) enhanced MIOX stability and activity. Overall, we used the GA bioselector and SUMO-MIOX fusion in fed-batch GA production and achieved a 5.52-g/L titer in , which was 17-fold higher than that of the original strain.IMPORTANCEGlucaric acid is a non-toxic valuable product that was mainly synthesized by chemical methods. Due to the problems of non-selectivity, inefficiency, and environmental pollution, GA biosynthesis has attracted significant attention. The non-genetic cell-to-cell variations and MIOX stability were both critical factors for GA production. In addition, the high detection limit of the GA biosensor was a key condition for performing high-throughput screening of GA-efficient production strains. To increase GA titer, this work eliminated the cell-to-cell variations by GA bioselector constructed based on GA biosensor and TetA, and improved the stability and activity of MIOX in the GA biosynthetic pathway through fusing the SUMO to MIOX. Finally, these approaches improved the GA production by 17-fold to 5.52 g/L at 65 h. This study represents a significant step toward the industrial application of GA biosynthetic pathways in .

摘要

葡萄糖醛酸(GA)是一种高附加值的化学品,可用于制造食品添加剂、抗癌药物和聚合物。GA 生物合成中的非遗传细胞间变异是自然存在的,这表明培养物中存在高表现和低表现细胞。低表现细胞会导致营养浪费和生产效率低下。此外,肌醇氧化酶(MIOX)是一种关键的限速酶,在 GA 生产中存在稳定性和活性低的问题。因此,消除细胞间变异并提高 MIOX 的稳定性可以选择高表现细胞并提高 GA 的产量。在本研究中,基于 GA 生物传感器和四环素外排泵蛋白 TetA 构建了 GA 生物选择器,以连续选择 GA 高效生产菌株。此外,通过核糖体结合位点优化将 GA 生物传感器的上限提高到 40 g/L,实现了 GA 高产细胞的高效富集。一种小泛素样修饰物(SUMO)增强了 MIOX 的稳定性和活性。总体而言,我们在 GA 分批补料生产中使用 GA 生物选择器和 SUMO-MIOX 融合,在 65 小时内达到 5.52 g/L 的滴度,比原始菌株高 17 倍。

重要性

葡萄糖醛酸是一种无毒的有价值产品,主要通过化学方法合成。由于非选择性、低效性和环境污染等问题,GA 生物合成引起了广泛关注。非遗传细胞间变异和 MIOX 稳定性都是 GA 生产的关键因素。此外,GA 生物传感器的高检测限是进行 GA 高效生产菌株高通量筛选的关键条件。为了提高 GA 的产量,本工作通过基于 GA 生物传感器和 TetA 的 GA 生物选择器消除了细胞间变异,并通过将 SUMO 融合到 MIOX 中提高了 GA 生物合成途径中 MIOX 的稳定性和活性。最终,在 65 小时内将 GA 的产量提高到 5.52 g/L,提高了 17 倍。这项研究代表了朝着 GA 生物合成途径在工业应用中的重要一步。

相似文献

1
Enhancing glucaric acid production from -inositol in by eliminating cell-to-cell variation.
Appl Environ Microbiol. 2024 Jun 18;90(6):e0014924. doi: 10.1128/aem.00149-24. Epub 2024 May 29.
2
3
Porting the synthetic D-glucaric acid pathway from Escherichia coli to Saccharomyces cerevisiae.
Biotechnol J. 2016 Sep;11(9):1201-8. doi: 10.1002/biot.201500563. Epub 2016 Jun 29.
4
Efficient Production of Glucaric Acid by Engineered Saccharomyces cerevisiae.
Appl Environ Microbiol. 2023 Jun 28;89(6):e0053523. doi: 10.1128/aem.00535-23. Epub 2023 May 22.
6
[Construction of a glucaric acid biosensor for screening myo-inositol oxygenase variants].
Sheng Wu Gong Cheng Xue Bao. 2018 Nov 25;34(11):1772-1783. doi: 10.13345/j.cjb.180056.
8
Production of glucaric acid from a synthetic pathway in recombinant Escherichia coli.
Appl Environ Microbiol. 2009 Feb;75(3):589-95. doi: 10.1128/AEM.00973-08. Epub 2008 Dec 5.
10
Use of modular, synthetic scaffolds for improved production of glucaric acid in engineered E. coli.
Metab Eng. 2010 May;12(3):298-305. doi: 10.1016/j.ymben.2010.01.003. Epub 2010 Feb 1.

本文引用的文献

1
Engineering an AI-based forward-reverse platform for the design of cross-ribosome binding sites of a transcription factor biosensor.
Comput Struct Biotechnol J. 2023 Apr 28;21:2929-2939. doi: 10.1016/j.csbj.2023.04.026. eCollection 2023.
2
SUMOylation and related post-translational modifications in natural killer cell anti-cancer responses.
Front Cell Dev Biol. 2023 May 25;11:1213114. doi: 10.3389/fcell.2023.1213114. eCollection 2023.
3
Efficient Production of Glucaric Acid by Engineered Saccharomyces cerevisiae.
Appl Environ Microbiol. 2023 Jun 28;89(6):e0053523. doi: 10.1128/aem.00535-23. Epub 2023 May 22.
4
Applications and Tuning Strategies for Transcription Factor-Based Metabolite Biosensors.
Biosensors (Basel). 2023 Mar 28;13(4):428. doi: 10.3390/bios13040428.
5
NeuronMotif: Deciphering cis-regulatory codes by layer-wise demixing of deep neural networks.
Proc Natl Acad Sci U S A. 2023 Apr 11;120(15):e2216698120. doi: 10.1073/pnas.2216698120. Epub 2023 Apr 6.
6
Integrating Enzyme Evolution and Metabolic Engineering to Improve the Productivity of Γ-Aminobutyric Acid by Whole-Cell Biosynthesis in .
J Agric Food Chem. 2023 Mar 22;71(11):4656-4664. doi: 10.1021/acs.jafc.2c07613. Epub 2023 Mar 7.
7
Enabling technology and core theory of synthetic biology.
Sci China Life Sci. 2023 Aug;66(8):1742-1785. doi: 10.1007/s11427-022-2214-2. Epub 2023 Feb 6.
8
Artificial intelligence technologies in bioprocess: Opportunities and challenges.
Bioresour Technol. 2023 Feb;369:128451. doi: 10.1016/j.biortech.2022.128451. Epub 2022 Dec 9.
9
Genetically encoded biosensors for microbial synthetic biology: From conceptual frameworks to practical applications.
Biotechnol Adv. 2023 Jan-Feb;62:108077. doi: 10.1016/j.biotechadv.2022.108077. Epub 2022 Dec 9.
10
Advances in engineering and optimization of transcription factor-based biosensors for plug-and-play small molecule detection.
Curr Opin Biotechnol. 2022 Aug;76:102753. doi: 10.1016/j.copbio.2022.102753. Epub 2022 Jul 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验