Department of Molecular & Cellular Medicine, Texas A&M University Health Science Center, College Station, TX, 77845, USA.
Medical Sciences Graduate Program, Texas A&M University Health Science Center, College Station, TX, 77845, USA.
Cell Death Dis. 2021 Mar 15;12(3):271. doi: 10.1038/s41419-020-03383-z.
Cancers, including glioblastoma multiforme (GBM), undergo coordinated reprogramming of metabolic pathways that control glycolysis and oxidative phosphorylation (OXPHOS) to promote tumor growth in diverse tumor microenvironments. Adaptation to limited nutrient availability in the microenvironment is associated with remodeling of mitochondrial morphology and bioenergetic capacity. We recently demonstrated that NF-κB-inducing kinase (NIK) regulates mitochondrial morphology to promote GBM cell invasion. Here, we show that NIK is recruited to the outer membrane of dividing mitochondria with the master fission regulator, Dynamin-related protein1 (DRP1). Moreover, glucose deprivation-mediated metabolic shift to OXPHOS increases fission and mitochondrial localization of both NIK and DRP1. NIK deficiency results in decreased mitochondrial respiration, ATP production, and spare respiratory capacity (SRC), a critical measure of mitochondrial fitness. Although IκB kinase α and β (IKKα/β) and NIK are required for OXPHOS in high glucose media, only NIK is required to increase SRC under glucose deprivation. Consistent with an IKK-independent role for NIK in regulating metabolism, we show that NIK phosphorylates DRP1-S616 in vitro and in vivo. Notably, a constitutively active DRP1-S616E mutant rescues oxidative metabolism, invasiveness, and tumorigenic potential in NIK cells without inducing IKK. Thus, we establish that NIK is critical for bioenergetic stress responses to promote GBM cell pathogenesis independently of IKK. Our data suggest that targeting NIK may be used to exploit metabolic vulnerabilities and improve therapeutic strategies for GBM.
癌症,包括多形性胶质母细胞瘤(GBM),经历了代谢途径的协调重编程,这些途径控制糖酵解和氧化磷酸化(OXPHOS),以促进在不同肿瘤微环境中的肿瘤生长。适应微环境中有限的营养可用性与线粒体形态和生物能量能力的重塑有关。我们最近表明,核因子-κB 诱导激酶(NIK)调节线粒体形态,以促进 GBM 细胞侵袭。在这里,我们表明 NIK 与主要分裂调节剂 Dynamin-related protein1(DRP1)一起被招募到分裂线粒体的外膜上。此外,葡萄糖剥夺介导的代谢向 OXPHOS 的转变增加了 NIK 和 DRP1 的分裂和线粒体定位。NIK 缺陷导致线粒体呼吸、ATP 产生和备用呼吸能力(SRC)减少,SRC 是线粒体适应性的一个关键衡量标准。尽管 IκB 激酶α和β(IKKα/β)和 NIK 在高葡萄糖培养基中都需要 OXPHOS,但只有在葡萄糖剥夺下,NIK 才需要增加 SRC。与 NIK 在调节代谢中的 IKK 独立作用一致,我们表明 NIK 在体外和体内磷酸化 DRP1-S616。值得注意的是,组成型活性 DRP1-S616E 突变体能挽救 NIK 细胞中的氧化代谢、侵袭性和致瘤潜力,而不会诱导 IKK。因此,我们确定 NIK 对于生物能量应激反应至关重要,可促进 GBM 细胞发病机制,而不依赖于 IKK。我们的数据表明,靶向 NIK 可能用于利用代谢脆弱性并改善 GBM 的治疗策略。