Synthetic Biology for Biomedical Applications Lab, Department of Experimental and Health Sciences. Universitat Pompeu Fabra, Biomedical Research Park, Barcelona, Spain.
Nat Commun. 2021 Mar 15;12(1):1679. doi: 10.1038/s41467-021-21967-x.
Much effort has been expended on building cellular computational devices for different applications. Despite the significant advances, there are still several addressable restraints to achieve the necessary technological transference. These improvements will ease the development of end-user applications working out of the lab. In this study, we propose a methodology for the construction of printable cellular devices, digital or analogue, for different purposes. These printable devices are designed to work in a 2D surface, in which the circuit information is encoded in the concentration of a biological signal, the so-called carrying signal. This signal diffuses through the 2D surface and thereby interacts with different device components. These components are distributed in a specific spatial arrangement and perform the computation by modulating the level of the carrying signal in response to external inputs, determining the final output. For experimental validation, 2D cellular circuits are printed on a paper surface by using a set of cellular inks. As a proof-of-principle, we have printed and analysed both digital and analogue circuits using the same set of cellular inks but with different spatial topologies. The proposed methodology can open the door to a feasible and reliable industrial production of cellular circuits for multiple applications.
人们在构建用于不同应用的细胞计算设备方面付出了大量努力。尽管取得了重大进展,但要实现必要的技术转移,仍有几个可解决的限制因素。这些改进将有助于开发实验室外的最终用户应用程序。在这项研究中,我们提出了一种用于构建不同用途的可打印细胞设备(数字或模拟设备)的方法。这些可打印设备旨在在 2D 表面上工作,其中电路信息被编码在生物信号的浓度中,即所谓的携带信号。该信号通过 2D 表面扩散,并与不同的设备组件相互作用。这些组件以特定的空间排列分布,并通过响应外部输入调制携带信号的水平来执行计算,从而确定最终输出。为了进行实验验证,我们使用一组细胞墨水在纸面上打印 2D 细胞电路。作为原理验证,我们使用相同的一组细胞墨水打印和分析了数字和模拟电路,但具有不同的空间拓扑结构。所提出的方法可以为多种应用的细胞电路的可行和可靠的工业生产开辟道路。