Suppr超能文献

利用长短期记忆网络(LSTM)对新冠疫情期间印度尼西亚股票价格进行预测的数据科学方法。

Data science approach to stock prices forecasting in Indonesia during Covid-19 using Long Short-Term Memory (LSTM).

作者信息

Budiharto Widodo

机构信息

Computer Science Department, School of Computer Science, Bina Nusantara University, Jakarta, 11480 Indonesia.

出版信息

J Big Data. 2021;8(1):47. doi: 10.1186/s40537-021-00430-0. Epub 2021 Mar 11.

Abstract

BACKGROUND

Stock market process is full of uncertainty; hence stock prices forecasting very important in finance and business. For stockbrokers, understanding trends and supported by prediction software for forecasting is very important for decision making. This paper proposes a data science model for stock prices forecasting in Indonesian exchange based on the statistical computing based on R language and Long Short-Term Memory (LSTM).

FINDINGS

The first Covid-19 (Coronavirus disease-19) confirmed case in Indonesia is on 2 March 2020. After that, the composite stock price index has plunged 28% since the start of the year and the share prices of cigarette producers and banks in the midst of the corona pandemic reached their lowest value on March 24, 2020. We use the big data from Bank of Central Asia (BCA) and Bank of Mandiri from Indonesia obtained from Yahoo finance. In our experiments, we visualize the data using data science and predict and simulate the important prices called Open, High, Low and Closing (OHLC) with various parameters.

CONCLUSIONS

Based on the experiment, data science is very useful for visualization data and our proposed method using Long Short-Term Memory (LSTM) can be used as predictor in short term data with accuracy 94.57% comes from the short term (1 year) with high epoch in training phase rather than using 3 years training data.

摘要

背景

股票市场过程充满不确定性;因此股价预测在金融和商业中非常重要。对于股票经纪人而言,了解趋势并借助预测软件进行预测对于决策至关重要。本文基于R语言的统计计算和长短期记忆(LSTM),提出了一种用于印度尼西亚证券交易所股价预测的数据科学模型。

研究结果

印度尼西亚首例新冠病毒病确诊病例于2020年3月2日出现。此后,综合股价指数自年初以来暴跌28%,香烟生产商和银行的股价在新冠疫情期间于2020年3月24日跌至最低值。我们使用从雅虎财经获取的来自印度尼西亚中亚银行(BCA)和曼迪里银行的大数据。在我们的实验中,我们使用数据科学对数据进行可视化,并使用各种参数预测和模拟称为开盘价、最高价、最低价和收盘价(OHLC)的重要价格。

结论

基于实验,数据科学对于数据可视化非常有用,并且我们提出的使用长短期记忆(LSTM)的方法可以用作短期数据的预测器,在训练阶段具有高轮次的短期(1年)数据的预测准确率为94.57%,而不是使用3年的训练数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d75f/7948653/c61b5ce80bb1/40537_2021_430_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验