Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
G3 (Bethesda). 2021 May 7;11(5). doi: 10.1093/g3journal/jkab084.
To maintain genome stability, organisms depend on faithful chromosome segregation, a process affected by diverse genetic pathways, some of which are not directly linked to mitosis. In this study, we set out to explore one such pathway represented by an undercharacterized gene, SNO1, identified previously in screens of the yeast knockout (YKO) library for mitotic fidelity genes. We found that the causative factor increasing mitotic error rate in the sno1Δ mutant is not loss of the Sno1 protein, but rather perturbation to the mRNA of the neighboring convergent gene, CTF13, encoding an essential component for forming the yeast kinetochore. This is caused by a combination of the Kanamycin resistance gene and the transcriptional terminator used in the YKO library affecting the CTF13 mRNA level and quality . We further provide a list of gene pairs potentially subjected to this artifact, which may be useful for accurate phenotypic interpretation of YKO mutants.
为了维持基因组稳定性,生物依赖于忠实的染色体分离,这一过程受到多种遗传途径的影响,其中一些途径与有丝分裂没有直接联系。在这项研究中,我们着手探索了一种由一个特征不明显的基因 sno1 所代表的途径,该基因是在酵母敲除 (YKO) 文库中筛选与有丝分裂保真度相关基因时发现的。我们发现,导致 sno1Δ 突变体中有丝分裂错误率增加的原因不是 sno1 蛋白的缺失,而是邻近的会聚基因 CTF13 的 mRNA 受到干扰,该基因编码形成酵母动粒所必需的成分。这是由 YKO 文库中使用的卡那霉素抗性基因和转录终止子共同作用导致的,它们影响 CTF13 mRNA 的水平和质量。我们进一步提供了一份可能受到这种假象影响的基因对列表,这对于准确解释 YKO 突变体的表型可能很有用。