Li Wei, Wei Jinlei, Bian Baoan, Liao Bin, Wang Guoliang
School of Science, Jiangnan University, Wuxi 214122, China.
Phys Chem Chem Phys. 2021 Mar 21;23(11):6871-6879. doi: 10.1039/d0cp05699e. Epub 2021 Mar 16.
The electronic transport properties of in-plane graphene/MoS/graphene heterojunctions are studied using density functional theory and the nonequilibrium Green's function method. It is found that different covalent bond connections cause different electron distributions, such as accumulation or depletion, on the contact surface. The C-S structure exhibits more electron accumulation and depletion, indicating that the electrons can easily transfer from MoS to graphene. Since the three structures all form covalent or ionic bonds, the tunneling barrier for carriers is very small. The C-S structure exhibits a smaller p-type Schottky barrier, indicating that it has better transport properties than the other two structures. We found that the effective doping method can reduce the Schottky-barrier height (SBH), resulting in smaller contact resistance. Thus, the current-voltage curves of the undoped and doped C-S structures exhibit rectification and approximately linear characteristics under a given bias, which agrees with experimental reports. These results provide insight for designing high-performance devices.
利用密度泛函理论和非平衡格林函数方法研究了面内石墨烯/MoS/石墨烯异质结的电子输运性质。研究发现,不同的共价键连接会在接触面上引起不同的电子分布,如积累或耗尽。C-S结构表现出更多的电子积累和耗尽,这表明电子可以很容易地从MoS转移到石墨烯。由于这三种结构都形成了共价键或离子键,载流子的隧穿势垒非常小。C-S结构表现出较小的p型肖特基势垒,这表明它比其他两种结构具有更好的输运性质。我们发现,有效的掺杂方法可以降低肖特基势垒高度(SBH),从而降低接触电阻。因此,在给定偏压下,未掺杂和掺杂的C-S结构的电流-电压曲线表现出整流特性和近似线性特性,这与实验报道一致。这些结果为设计高性能器件提供了思路。