Suppr超能文献

通过透明机器学习预测和研究纳米颗粒的细胞毒性

Predicting and investigating cytotoxicity of nanoparticles by translucent machine learning.

作者信息

Yu Hengjie, Zhao Zhilin, Cheng Fang

机构信息

College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, PR China.

College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, PR China.

出版信息

Chemosphere. 2021 Aug;276:130164. doi: 10.1016/j.chemosphere.2021.130164. Epub 2021 Mar 4.

Abstract

Safety concerns of engineered nanoparticles (ENPs) hamper their applications and commercialization in many potential fields. Machine learning has been proved as a great tool to understand the complex ENP-organism-environment relationship. However, good-performance machine learning models usually exist as black boxes, which may be difficult to build trust and whose ways of expressing knowledge rarely directly map to forms familiar to scientists. Here, we present an approach for uncovering causal structure in nanotoxicity datasets by mutual-validated and model-agnostic interpretation methods. Model predictions can be explained from feature importance, feature effects, and feature interactions. The utility of this approach is demonstrated through two case studies, the cytotoxicity of cadmium-containing quantum dots and metal oxide nanoparticles. Further, these case studies indicate the efficacy and impacts at two scales: (i) model interpretation, where the most relevant features for correlating cytotoxicity are identified and their influence on model predictions and interactions with other features are then explained, and (ii) model validation, where the difference among interpretation results of different methods (or the difference between interpretation results and well-known toxicity mechanisms) may reflect some inherent problems in the used dataset (or the developed models). Our approach of integrating machine learning models and interpretation methods provides a roadmap for predicting the toxicity of ENPs in a translucent way.

摘要

工程纳米颗粒(ENPs)的安全性问题阻碍了它们在许多潜在领域的应用和商业化。机器学习已被证明是理解ENP-生物体-环境复杂关系的有力工具。然而,高性能的机器学习模型通常是黑箱模型,可能难以建立信任,并且其知识表达形式很少直接映射到科学家熟悉的形式。在此,我们提出一种通过相互验证和与模型无关的解释方法来揭示纳米毒性数据集中因果结构的方法。模型预测可以从特征重要性、特征效应和特征相互作用方面进行解释。通过两个案例研究,即含镉量子点和金属氧化物纳米颗粒的细胞毒性研究,证明了该方法的实用性。此外,这些案例研究在两个层面表明了其有效性和影响:(i)模型解释,确定与细胞毒性相关的最相关特征,然后解释它们对模型预测的影响以及与其他特征的相互作用;(ii)模型验证,不同方法的解释结果之间的差异(或解释结果与已知毒性机制之间的差异)可能反映了所用数据集(或所开发模型)中存在的一些固有问题。我们将机器学习模型与解释方法相结合的方法为以半透明方式预测ENPs的毒性提供了一条路线图。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验