Hiraki Tatsurou, Aihara Takuma, Fujii Takuro, Takeda Koji, Maeda Yoshiho, Kakitsuka Takaaki, Tsuchizawa Tai, Matsuo Shinji
Opt Express. 2021 Jan 18;29(2):2431-2441. doi: 10.1364/OE.411483.
We demonstrate a wafer-level integration of a distributed feedback laser diode (DFB LD) and high-efficiency Mach-Zehnder modulator (MZM) using InGaAsP phase shifters on Si waveguide circuits. The key to integrating materials with different bandgaps is to combine direct wafer bonding of a multiple quantum well layer for the DFB LD and regrowth of a bulk layer for the phase shifter. Buried regrowth of an InP layer is also employed to define the waveguide cores for the LD and phase shifters on a Si substrate. Both the LD and phase shifters have 230-nm-thick lateral diodes, whose thickness is less than the critical thickness of the III-V compound semiconductor layers on the Si substrate. The fabricated device has a 500-µm-long DFB LD and 500-µm-long carrier-depletion InGaAsP-bulk phase shifters, which provide a total footprint of only 1.9 × 0.31 mm. Thanks to the low losses of the silica-based fiber couplers, InP/Si narrow tapers, and the phase shifters, the fiber-coupled output power of 3.2 mW is achieved with the LD current of 80 mA. The MZM has a VL of around 0.4 Vcm, which overcomes the VL limit of typical carrier-depletion Si MZMs. Thanks to the high modulation efficiency, the device shows an extinction ratio of 5 dB for 50-Gbit/s NRZ signal with a low peak-to-peak voltage of 2.5 V, despite the short phase shifters and single-arm driving.
我们展示了一种在硅波导电路上使用InGaAsP移相器实现分布式反馈激光二极管(DFB LD)和高效马赫曾德尔调制器(MZM)的晶圆级集成。集成具有不同带隙材料的关键在于将用于DFB LD的多量子阱层的直接晶圆键合与用于移相器的体层的再生长相结合。还采用InP层的掩埋再生长来在硅衬底上定义LD和移相器的波导芯。LD和移相器都具有230纳米厚的横向二极管,其厚度小于硅衬底上III-V族化合物半导体层的临界厚度。所制造的器件具有一个500微米长的DFB LD和500微米长的载流子耗尽型InGaAsP体移相器,其总占地面积仅为1.9×0.31毫米。由于基于二氧化硅的光纤耦合器、InP/Si窄锥形结构和移相器的低损耗,在80毫安的LD电流下实现了3.2毫瓦的光纤耦合输出功率。该MZM的Vπ约为0.4伏/厘米,克服了典型的载流子耗尽型硅MZM的Vπ限制。由于调制效率高,尽管移相器较短且采用单臂驱动,但该器件对于50吉比特/秒的NRZ信号仍显示出5分贝的消光比,且峰峰值电压低至2.5伏。