Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA.
Office of Scientific Coordination, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA.
Toxicol Lett. 2021 Jun 15;344:58-68. doi: 10.1016/j.toxlet.2021.03.006. Epub 2021 Mar 13.
Luteolin (5,7,3',4'-tetrahydroxyflavone) belongs to the flavone subclass of flavonoids. Luteolin and its glycosides are present in many botanical families, including edible plants, fruits, and vegetables. While the beneficial properties of luteolin have been widely studied, fewer studies have investigated its toxicity. In the present study, using human lymphoblastoid TK6 cells and our newly developed TK6-derived cell lines that each stably express a single human cytochrome P450 (CYP1A1, 1A2, 1B1, 2A6, 2B6, 2C8, 2C18, 2C9, 2C19, 2D6, 2E1, 3A4, 3A5, and 3A7), we systematically evaluated luteolin-induced cytotoxicity and genotoxicity, and the role of specific CYPs in the bioactivation of luteolin. Treatments with luteolin for 4-24 h induced cytotoxicity, apoptosis, DNA damage, and chromosome damage in a concentration-dependent manner. Subsequently, we observed that luteolin-induced cytotoxicity and genotoxicity, measured by the high-throughput micronucleus assay, were significantly increased in TK6 cells transduced with CYP1A1 and 1A2. In addition, key apoptosis and DNA damage biomarkers, including cleaved PARP-1, cleaved caspase-3, and phosphorylated histone 2AX (γH2A.X), were all significantly increased in the CYP1A1- and 1A2-expressing cells compared with the empty vector controls. Analysis by LC-MS/MS revealed that TK6 cells biotransformed the majority of luteolin into diosmetin, a less toxic O-methylated flavone, after 24 h; the presence of CYP1A1 and 1A2 partially reversed this process. Altogether, these results indicate that metabolism by CYP1A1 and 1A2 enhanced the toxicity of luteolin in vitro. Our results further support the utility of our TK6 cell system for identification of the specific CYPs responsible for chemical bioactivation and toxicity potential.
木樨草素(5,7,3',4'-四羟基黄酮)属于黄酮类化合物的黄酮类。木樨草素及其糖苷存在于许多植物科中,包括食用植物、水果和蔬菜。虽然木樨草素的有益特性已得到广泛研究,但对其毒性的研究较少。在本研究中,使用人淋巴母细胞 TK6 细胞和我们新开发的 TK6 衍生细胞系,每个细胞稳定表达单一人类细胞色素 P450(CYP1A1、1A2、1B1、2A6、2B6、2C8、2C18、2C9、2C19、2D6、2E1、3A4、3A5 和 3A7),我们系统地评估了木樨草素诱导的细胞毒性和遗传毒性,以及特定 CYP 在木樨草素生物活化中的作用。木樨草素处理 4-24 小时以浓度依赖的方式诱导细胞毒性、细胞凋亡、DNA 损伤和染色体损伤。随后,我们观察到,在用 CYP1A1 和 1A2 转导的 TK6 细胞中,通过高通量微核试验测量的木樨草素诱导的细胞毒性和遗传毒性显著增加。此外,与空载体对照相比,CYP1A1 和 1A2 表达细胞中的关键细胞凋亡和 DNA 损伤生物标志物,包括裂解的 PARP-1、裂解的 caspase-3 和磷酸化组蛋白 2AX(γH2A.X),均显著增加。通过 LC-MS/MS 分析表明,在 24 小时后,TK6 细胞将大部分木樨草素生物转化为较少毒性的 O-甲基化黄酮大豆素,而 CYP1A1 和 1A2 的存在部分逆转了这一过程。总的来说,这些结果表明 CYP1A1 和 1A2 的代谢增强了木樨草素在体外的毒性。我们的结果进一步支持了我们的 TK6 细胞系统用于鉴定负责化学生物活化和毒性潜力的特定 CYP 的效用。