Suppr超能文献

基于条件生成对抗网络的直接图像衰减校正用于单光子发射计算机断层扫描心肌灌注成像

Direct Image-Based Attenuation Correction using Conditional Generative Adversarial Network for SPECT Myocardial Perfusion Imaging.

作者信息

Torkaman Mahsa, Yang Jaewon, Shi Luyao, Wang Rui, Miller Edward J, Sinusas Albert J, Liu Chi, Gullberg Grant T, Seo Youngho

机构信息

Physics Research Laboratory, Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA.

Department of Biomedical Engineering, Yale University, New Haven, CT, USA.

出版信息

Proc SPIE Int Soc Opt Eng. 2021 Feb;11600. doi: 10.1117/12.2580922. Epub 2021 Feb 15.

Abstract

Attenuation correction (AC) is important for an accurate interpretation and quantitative analysis of SPECT myocardial perfusion imaging. Dedicated cardiac SPECT systems have invaluable efficacy in the evaluation and risk stratification of patients with known or suspected cardiovascular disease. However, most dedicated cardiac SPECT systems are standalone, not combined with a transmission imaging capability such as computed tomography (CT) for generating attenuation maps for AC. To address this problem, we propose to apply a conditional generative adversarial network (cGAN) for generating attenuation-corrected SPECT images ( ) directly from non-corrected SPECT images ( ) in image domain as a one-step process without requiring additional intermediate step. The proposed network was trained and tested for 100 cardiac SPECT/CT data from a GE Discovery NM 570c SPECT/CT, collected retrospectively at Yale New Haven Hospital.The generated images were evaluated quantitatively through the normalized root mean square error (NRMSE), peak signal to noise ratio (PSNR), and structural similarity index (SSIM) and statistically through joint histogram and error maps. In comparison to the reference CT-based correction ( ), NRMSEs were 0.2258±0.0777 and 0.1410±0.0768 (37.5% reduction of errors); PSNRs 31.7712±2.9965 and 36.3823±3.7424 (14.5% improvement in signal to noise ratio); SSIMs 0.9877±0.0075 and 0.9949±0.0043 (0.7% improvement in structural similarity) for and , respectively. This work demonstrates that the conditional adversarial training can achieve accurate CT-less attenuation correction for SPECT MPI, that is quantitatively comparable to CTAC. Standalone dedicated cardiac SPECT scanners can benefit from the proposed GAN to reduce attenuation artifacts efficiently.

摘要

衰减校正(AC)对于单光子发射计算机断层扫描(SPECT)心肌灌注成像的准确解读和定量分析至关重要。专用心脏SPECT系统在已知或疑似心血管疾病患者的评估和风险分层中具有不可估量的功效。然而,大多数专用心脏SPECT系统是独立的,未与诸如计算机断层扫描(CT)等透射成像功能相结合以生成用于AC的衰减图。为了解决这个问题,我们建议应用条件生成对抗网络(cGAN)在图像域中直接从未校正的SPECT图像( )生成衰减校正的SPECT图像( ),作为一个一步过程,无需额外的中间步骤。所提出的网络针对来自GE Discovery NM 570c SPECT/CT的100例心脏SPECT/CT数据进行了训练和测试,这些数据是在耶鲁纽黑文医院回顾性收集的。通过归一化均方根误差(NRMSE)、峰值信噪比(PSNR)和结构相似性指数(SSIM)对生成的图像进行定量评估,并通过联合直方图和误差图进行统计评估。与基于参考CT的校正( )相比, 和 的NRMSE分别为0.2258±0.0777和0.1410±0.0768(误差减少37.5%);PSNR分别为31.7712±2.9965和36.3823±3.7424(信噪比提高14.

相似文献

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验