Suppr超能文献

数据管理与网络架构对基于深度学习的心脏SPECT直接衰减校正中性能变异性的影响:一项可行性研究

Data Management and Network Architecture Effect on Performance Variability in Direct Attenuation Correction via Deep Learning for Cardiac SPECT: A Feasibility Study.

作者信息

Torkaman Mahsa, Yang Jaewon, Shi Luyao, Wang Rui, Miller Edward J, Sinusas Albert J, Liu Chi, Gullberg Grant T, Seo Youngho

机构信息

Radiology and Biomedical Imaging Department, University of California, San Francisco, CA, USA.

Biomedical Engineering Department, Yale University, New Haven, CT, USA.

出版信息

IEEE Trans Radiat Plasma Med Sci. 2022 Sep;6(7):755-765. doi: 10.1109/trpms.2021.3138372. Epub 2021 Dec 24.

Abstract

Attenuation correction (AC) is important for accurate interpretation of SPECT myocardial perfusion imaging (MPI). However, it is challenging to perform AC in dedicated cardiac systems not equipped with a transmission imaging capability. Previously, we demonstrated the feasibility of generating attenuation-corrected SPECT images using a deep learning technique (SPECT) directly from non-corrected images (SPECT). However, we observed performance variability across patients which is an important factor for clinical translation of the technique. In this study, we investigate the feasibility of overcoming the performance variability across patients for the direct AC in SPECT MPI by proposing to develop an advanced network and a data management strategy. To investigate, we compared the accuracy of the SPECT for the conventional U-Net and Wasserstein cycle GAN (WCycleGAN) networks. To manage the training data, clustering was applied to a representation of data in the lower-dimensional space, and the training data were chosen based on the similarity of data in this space. Quantitative analysis demonstrated that DL model with an advanced network improves the global performance for the AC task with the limited data. However, the regional results were not improved. The proposed data management strategy demonstrated that the clustered training has potential benefit for effective training.

摘要

衰减校正(AC)对于准确解读单光子发射计算机断层扫描(SPECT)心肌灌注成像(MPI)至关重要。然而,在没有配备透射成像功能的专用心脏系统中进行AC具有挑战性。此前,我们证明了使用深度学习技术直接从未校正图像(SPECT)生成衰减校正SPECT图像的可行性。然而,我们观察到不同患者之间存在性能差异,这是该技术临床转化的一个重要因素。在本研究中,我们通过提出开发一种先进的网络和数据管理策略,来研究克服SPECT MPI中直接AC在不同患者间性能差异的可行性。为了进行研究,我们比较了传统U-Net和瓦瑟斯坦循环生成对抗网络(WCycleGAN)对SPECT的准确性。为了管理训练数据,我们将聚类应用于低维空间中的数据表示,并根据该空间中数据的相似性选择训练数据。定量分析表明,具有先进网络的深度学习模型在有限数据的情况下提高了AC任务的整体性能。然而,区域结果并未得到改善。所提出的数据管理策略表明,聚类训练对有效训练具有潜在益处。

相似文献

本文引用的文献

1
Application and Construction of Deep Learning Networks in Medical Imaging.深度学习网络在医学成像中的应用与构建
IEEE Trans Radiat Plasma Med Sci. 2021 Mar;5(2):137-159. doi: 10.1109/trpms.2020.3030611. Epub 2020 Oct 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验