Suppr超能文献

非单调缺失二分类结局随机试验的全局敏感性分析:在物质使用障碍研究中的应用。

Global sensitivity analysis of randomized trials with nonmonotone missing binary outcomes: Application to studies of substance use disorders.

机构信息

Department of Population Health Sciences, University of Utah School of Medicine, Salt Lake City, Utah, USA.

Department of Biostatistics, Brown University, Providence, Rhode Island, USA.

出版信息

Biometrics. 2022 Jun;78(2):649-659. doi: 10.1111/biom.13455. Epub 2021 Apr 6.

Abstract

In this paper, we present a method for conducting global sensitivity analysis of randomized trials in which binary outcomes are scheduled to be collected on participants at prespecified points in time after randomization and these outcomes may be missing in a nonmonotone fashion. We introduce a class of missing data assumptions, indexed by sensitivity parameters, which are anchored around the missing not at random assumption introduced by Robins (Statistics in Medicine, 1997). For each assumption in the class, we establish that the joint distribution of the outcomes is identifiable from the distribution of the observed data. Our estimation procedure uses the plug-in principle, where the distribution of the observed data is estimated using random forests. We establish asymptotic properties for our estimation procedure. We illustrate our methodology in the context of a randomized trial designed to evaluate a new approach to reducing substance use, assessed by testing urine samples twice weekly, among patients entering outpatient addiction treatment. We evaluate the finite sample properties of our method in a realistic simulation study. Our methods have been implemented in an R package entitled slabm.

摘要

在本文中,我们提出了一种方法,用于对随机试验进行全局敏感性分析,其中在随机分组后预设的时间点上对参与者进行二分类结局的收集,并且这些结局可能以非单调的方式缺失。我们引入了一类缺失数据假设,由敏感性参数索引,这些假设以 Robins(Statistics in Medicine,1997)提出的缺失不是随机的假设为基础。对于类中的每个假设,我们确定从观察到的数据的分布中可以识别结局的联合分布。我们的估计程序使用插件原理,其中使用随机森林来估计观察到的数据的分布。我们为我们的估计程序建立了渐近性质。我们在一项旨在通过每周两次检测尿液样本来评估减少物质使用的新方法的随机试验背景下说明了我们的方法,该方法用于评估进入门诊成瘾治疗的患者。我们在现实的模拟研究中评估了我们方法的有限样本性质。我们的方法已经在一个名为 slabm 的 R 包中实现。

相似文献

7
Statistical inference for missing data mechanisms.缺失数据机制的统计推断。
Stat Med. 2020 Dec 10;39(28):4325-4333. doi: 10.1002/sim.8727. Epub 2020 Aug 19.

引用本文的文献

本文引用的文献

3
Information-anchored sensitivity analysis: theory and application.信息锚定敏感性分析:理论与应用
J R Stat Soc Ser A Stat Soc. 2019 Feb;182(2):623-645. doi: 10.1111/rssa.12423. Epub 2018 Nov 16.
5
On Inverse Probability Weighting for Nonmonotone Missing at Random Data.关于随机缺失非单调数据的逆概率加权法
J Am Stat Assoc. 2018;113(521):369-379. doi: 10.1080/01621459.2016.1256814. Epub 2017 Dec 1.
10
Missing data methods in longitudinal studies: a review.纵向研究中的缺失数据方法:综述
Test (Madr). 2009 May 1;18(1):1-43. doi: 10.1007/s11749-009-0138-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验