Kalhor Hourieh, Mokhtarian Mohammad Hossein, Rahimi Hamzeh, Shahbazi Behzad, Kalhor Reyhaneh, Komeili Movahed Tahereh, Abolhasani Hoda
Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Garmsar Branch, Islamic Azad University, Garmsar, Iran.
Iran J Pharm Res. 2024 Dec 8;23(1):e150879. doi: 10.5812/ijpr-150879. eCollection 2024 Jan-Dec.
The receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 interacts with the angiotensin-converting enzyme 2 (ACE2) receptor in humans. To date, numerous SARS-CoV-2 variants, particularly those involving mutations in the RBD, have been identified. These variants exhibit differences in transmission, pathogenicity, diagnostics, and vaccine efficacy.
Although therapeutic agents are currently available to inhibit SARS-CoV-2, most provide supportive and symptomatic relief. Moreover, different variants may exhibit resistance to these treatments. This study aimed to identify a potential compound with favorable antiviral effects against SARS-CoV-2 variants.
The study explored drug discovery through structure-based virtual screening of natural products (NPs) from the StreptomeDB database, targeting the ACE2-binding pocket of the SARS-CoV-2 RBD protein. The analysis included the wild-type protein (PDB ID: 6VW1) as well as the Alpha, Beta, Delta, Lambda, Omicron/BA.1, and Omicron/BA.2 variants.
In silico screening identified 'Stambomycin B' as a potential compound with the highest binding affinity. Molecular dynamics simulations of the complexes, conducted over 100 ns, confirmed the prediction that 'Stambomycin B' could inhibit different SARS-CoV-2 variants effectively.
This study concludes that 'Stambomycin B', a macrolide compound produced by , may be a candidate NP for effectively combating all mutants that occur in the binding of SARS-CoV-2 RBD to ACE2, even those that may arise in the future.
严重急性呼吸综合征冠状病毒2(SARS-CoV-2)刺突蛋白的受体结合域(RBD)与人类血管紧张素转换酶2(ACE2)受体相互作用。迄今为止,已鉴定出许多SARS-CoV-2变体,特别是那些涉及RBD突变的变体。这些变体在传播、致病性、诊断和疫苗效力方面存在差异。
尽管目前有治疗药物可抑制SARS-CoV-2,但大多数药物只能提供支持性和对症缓解。此外,不同的变体可能对这些治疗产生抗性。本研究旨在鉴定一种对SARS-CoV-2变体具有良好抗病毒作用的潜在化合物。
该研究通过对来自StreptomeDB数据库的天然产物(NPs)进行基于结构的虚拟筛选来探索药物发现,以SARS-CoV-2 RBD蛋白的ACE2结合口袋为靶点。分析包括野生型蛋白(PDB ID:6VW1)以及Alpha、Beta、Delta、Lambda、Omicron/BA.1和Omicron/BA.2变体。
计算机模拟筛选确定“链黑菌素B”为具有最高结合亲和力的潜在化合物。对复合物进行的超过100纳秒的分子动力学模拟证实了“链黑菌素B”可有效抑制不同SARS-CoV-2变体的预测。
本研究得出结论,由 产生的大环内酯类化合物“链黑菌素B”可能是一种候选天然产物,可有效对抗SARS-CoV-2 RBD与ACE2结合中出现的所有突变体,甚至包括未来可能出现的突变体。