Suppr超能文献

自动行为识别系统使用运动及其时间上下文对动物行为进行分类。

An automatic behavior recognition system classifies animal behaviors using movements and their temporal context.

机构信息

Department of Molecular, Cellular, and Developmental Biology, UC Santa Barbara, Santa Barbara, CA, USA.

Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.

出版信息

J Neurosci Methods. 2019 Oct 1;326:108352. doi: 10.1016/j.jneumeth.2019.108352. Epub 2019 Aug 12.

Abstract

Animals can perform complex and purposeful behaviors by executing simpler movements in flexible sequences. It is particularly challenging to analyze behavior sequences when they are highly variable, as is the case in language production, certain types of birdsong and, as in our experiments, flies grooming. High sequence variability necessitates rigorous quantification of large amounts of data to identify organizational principles and temporal structure of such behavior. To cope with large amounts of data, and minimize human effort and subjective bias, researchers often use automatic behavior recognition software. Our standard grooming assay involves coating flies in dust and videotaping them as they groom to remove it. The flies move freely and so perform the same movements in various orientations. As the dust is removed, their appearance changes. These conditions make it difficult to rely on precise body alignment and anatomical landmarks such as eyes or legs and thus present challenges to existing behavior classification software. Human observers use speed, location, and shape of the movements as the diagnostic features of particular grooming actions. We applied this intuition to design a new automatic behavior recognition system (ABRS) based on spatiotemporal features in the video data, heavily weighted for temporal dynamics and invariant to the animal's position and orientation in the scene. We use these spatiotemporal features in two steps of supervised classification that reflect two time-scales at which the behavior is structured. As a proof of principle, we show results from quantification and analysis of a large data set of stimulus-induced fly grooming behaviors that would have been difficult to assess in a smaller dataset of human-annotated ethograms. While we developed and validated this approach to analyze fly grooming behavior, we propose that the strategy of combining alignment-invariant features and multi-timescale analysis may be generally useful for movement-based classification of behavior from video data.

摘要

动物可以通过灵活地执行简单的动作来执行复杂而有目的的行为。当行为序列高度可变时,分析行为序列特别具有挑战性,就像语言产生、某些类型的鸟鸣以及我们实验中的苍蝇梳理行为一样。高度可变的序列需要严格量化大量数据,以识别此类行为的组织原则和时间结构。为了处理大量数据,并最大程度地减少人工努力和主观偏见,研究人员通常使用自动行为识别软件。我们的标准梳理测定法涉及给苍蝇涂上灰尘,然后用视频记录它们梳理以去除灰尘的过程。苍蝇自由移动,因此以各种方向执行相同的动作。随着灰尘的清除,它们的外观会发生变化。这些情况使得难以依赖精确的身体对齐和解剖学标记(例如眼睛或腿),因此对现有的行为分类软件提出了挑战。人类观察者将运动的速度、位置和形状用作特定梳理动作的诊断特征。我们将这种直觉应用于设计一种新的自动行为识别系统 (ABRS),该系统基于视频数据中的时空特征,重点关注时间动态,并且与动物在场景中的位置和方向无关。我们在两步监督分类中使用这些时空特征,这两步反映了行为结构化的两个时间尺度。作为原理验证,我们展示了从大量刺激诱导的苍蝇梳理行为数据中进行定量和分析的结果,如果在较小的人类注释行为图谱数据集上,这些结果将难以评估。虽然我们开发并验证了这种方法来分析苍蝇梳理行为,但我们提出了一种策略,即结合不变的对齐特征和多时间尺度分析,可能对基于视频数据的运动行为分类普遍有用。

相似文献

1
An automatic behavior recognition system classifies animal behaviors using movements and their temporal context.
J Neurosci Methods. 2019 Oct 1;326:108352. doi: 10.1016/j.jneumeth.2019.108352. Epub 2019 Aug 12.
3
Automated classification of self-grooming in mice using open-source software.
J Neurosci Methods. 2017 Sep 1;289:48-56. doi: 10.1016/j.jneumeth.2017.05.026. Epub 2017 Jun 23.
4
Learning to recognize rat social behavior: Novel dataset and cross-dataset application.
J Neurosci Methods. 2018 Apr 15;300:166-172. doi: 10.1016/j.jneumeth.2017.05.006. Epub 2017 May 8.
5
Behavioral Activity Recognition Based on Gaze Ethograms.
Int J Neural Syst. 2020 Jul;30(7):2050025. doi: 10.1142/S0129065720500252. Epub 2020 Jun 9.
7
M-Track: A New Software for Automated Detection of Grooming Trajectories in Mice.
PLoS Comput Biol. 2016 Sep 16;12(9):e1005115. doi: 10.1371/journal.pcbi.1005115. eCollection 2016 Sep.
8
Mouse Arm and hand movements in grooming are reaching movements: Evolution of reaching, handedness, and the thumbnail.
Behav Brain Res. 2020 Sep 1;393:112732. doi: 10.1016/j.bbr.2020.112732. Epub 2020 Jun 4.
9
Semi-automatic behavior analysis using robot/insect mixed society and video tracking.
J Neurosci Methods. 2010 Aug 15;191(1):138-44. doi: 10.1016/j.jneumeth.2010.06.013. Epub 2010 Jun 19.
10
Improved 3D tracking and automated classification of rodents' behavioral activity using depth-sensing cameras.
Behav Res Methods. 2020 Oct;52(5):2156-2167. doi: 10.3758/s13428-020-01381-9.

引用本文的文献

1
A study of animal action segmentation algorithms across supervised, unsupervised, and semi-supervised learning paradigms.
Neuron Behav Data Anal Theory. 2024;2024. doi: 10.51628/001c.127770. Epub 2024 Dec 20.
2
High-throughput end-to-end aphid honeydew excretion behavior recognition method based on rapid adaptive motion-feature fusion.
Front Plant Sci. 2025 Jul 7;16:1609222. doi: 10.3389/fpls.2025.1609222. eCollection 2025.
4
Characterizing the structure of mouse behavior using Motion Sequencing.
Nat Protoc. 2024 Nov;19(11):3242-3291. doi: 10.1038/s41596-024-01015-w. Epub 2024 Jun 26.
5
Inhibitory circuits generate rhythms for leg movements during grooming.
bioRxiv. 2025 Feb 11:2024.06.05.597468. doi: 10.1101/2024.06.05.597468.
6
Selfee, self-supervised features extraction of animal behaviors.
Elife. 2022 Jun 16;11:e76218. doi: 10.7554/eLife.76218.
7
A pair of commissural command neurons induces wing grooming.
iScience. 2022 Feb 3;25(2):103792. doi: 10.1016/j.isci.2022.103792. eCollection 2022 Feb 18.
8
Variation and Variability in Grooming Behavior.
Front Behav Neurosci. 2022 Jan 11;15:769372. doi: 10.3389/fnbeh.2021.769372. eCollection 2021.
9
Behavioral evidence for nested central pattern generator control of grooming.
Elife. 2021 Dec 22;10:e71508. doi: 10.7554/eLife.71508.
10
Distinct movement patterns generate stages of spider web building.
Curr Biol. 2021 Nov 22;31(22):4983-4997.e5. doi: 10.1016/j.cub.2021.09.030. Epub 2021 Oct 6.

本文引用的文献

1
Understanding Image Representations by Measuring Their Equivariance and Equivalence.
Int J Comput Vis. 2019;127(5):456-476. doi: 10.1007/s11263-018-1098-y. Epub 2018 May 18.
2
Fast animal pose estimation using deep neural networks.
Nat Methods. 2019 Jan;16(1):117-125. doi: 10.1038/s41592-018-0234-5. Epub 2018 Dec 20.
3
DeepLabCut: markerless pose estimation of user-defined body parts with deep learning.
Nat Neurosci. 2018 Sep;21(9):1281-1289. doi: 10.1038/s41593-018-0209-y. Epub 2018 Aug 20.
5
Learning to Compose Domain-Specific Transformations for Data Augmentation.
Adv Neural Inf Process Syst. 2017 Dec;30:3239-3249.
6
Mapping the Neural Substrates of Behavior.
Cell. 2017 Jul 13;170(2):393-406.e28. doi: 10.1016/j.cell.2017.06.032.
7
Systematic exploration of unsupervised methods for mapping behavior.
Phys Biol. 2017 Feb 6;14(1):015002. doi: 10.1088/1478-3975/14/1/015002.
8
Machine vision methods for analyzing social interactions.
J Exp Biol. 2017 Jan 1;220(Pt 1):25-34. doi: 10.1242/jeb.142281.
9
Predictability and hierarchy in Drosophila behavior.
Proc Natl Acad Sci U S A. 2016 Oct 18;113(42):11943-11948. doi: 10.1073/pnas.1607601113. Epub 2016 Oct 4.
10
Computational Analysis of Behavior.
Annu Rev Neurosci. 2016 Jul 8;39:217-36. doi: 10.1146/annurev-neuro-070815-013845. Epub 2016 Apr 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验