Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA.
Soft Matter. 2021 Mar 28;17(12):3291-3293. doi: 10.1039/d1sm00282a. Epub 2021 Mar 17.
In structural biology, cryo-electron microscopy (cryo-EM) has emerged as the main technique for determining the atomic structures of macromolecular complexes. This has largely been due to the introduction of direct electron detectors, which have allowed for routinely reaching a near-atomic resolution when imaging such complexes. In chemistry and materials science, the applications of cryo-EM have been much more limited. A recent paper (Z. Li et al., Chemically Controlled Helical Polymorphism In Protein Tubes By Selective Modulation Of Supramolecular Interactions, J. Am. Chem. Soc. 2019, 141, 19448-19457) has used low resolution cryo-EM to analyze polymorphic helical tubes formed by a tetrameric protein, and has made detailed models for the interfaces between the tetramers in these assemblies. Due to intrinsic ambiguities in determining the correct helical symmetry, we show that many of the models are likely to be wrong. This note highlights both the enormous potential for using cryo-EM, and also the pitfalls possible for helical assemblies when a near-atomic level of resolution is not reached.
在结构生物学中,低温电子显微镜(cryo-EM)已成为确定大分子复合物原子结构的主要技术。这在很大程度上要归功于直接电子探测器的引入,该探测器使得在对这些复合物进行成像时,通常可以达到近原子分辨率。在化学和材料科学中,低温电子显微镜的应用要受到更多限制。最近的一篇论文(Z. Li 等人,通过选择性调节超分子相互作用控制蛋白质管中的化学螺旋态,美国化学会志,2019,141,19448-19457)使用低分辨率低温电子显微镜分析了由四聚体蛋白形成的多晶螺旋管,并为这些组装体中四聚体之间的界面制作了详细模型。由于确定正确螺旋对称性的固有歧义,我们表明,许多模型可能是错误的。本说明既强调了使用低温电子显微镜的巨大潜力,也强调了当无法达到近原子分辨率时,螺旋组装可能存在的陷阱。