Suppr超能文献

冷冻电镜是一种强大的工具,但螺旋应用可能存在一些陷阱。

Cryo-EM is a powerful tool, but helical applications can have pitfalls.

机构信息

Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA.

出版信息

Soft Matter. 2021 Mar 28;17(12):3291-3293. doi: 10.1039/d1sm00282a. Epub 2021 Mar 17.

Abstract

In structural biology, cryo-electron microscopy (cryo-EM) has emerged as the main technique for determining the atomic structures of macromolecular complexes. This has largely been due to the introduction of direct electron detectors, which have allowed for routinely reaching a near-atomic resolution when imaging such complexes. In chemistry and materials science, the applications of cryo-EM have been much more limited. A recent paper (Z. Li et al., Chemically Controlled Helical Polymorphism In Protein Tubes By Selective Modulation Of Supramolecular Interactions, J. Am. Chem. Soc. 2019, 141, 19448-19457) has used low resolution cryo-EM to analyze polymorphic helical tubes formed by a tetrameric protein, and has made detailed models for the interfaces between the tetramers in these assemblies. Due to intrinsic ambiguities in determining the correct helical symmetry, we show that many of the models are likely to be wrong. This note highlights both the enormous potential for using cryo-EM, and also the pitfalls possible for helical assemblies when a near-atomic level of resolution is not reached.

摘要

在结构生物学中,低温电子显微镜(cryo-EM)已成为确定大分子复合物原子结构的主要技术。这在很大程度上要归功于直接电子探测器的引入,该探测器使得在对这些复合物进行成像时,通常可以达到近原子分辨率。在化学和材料科学中,低温电子显微镜的应用要受到更多限制。最近的一篇论文(Z. Li 等人,通过选择性调节超分子相互作用控制蛋白质管中的化学螺旋态,美国化学会志,2019,141,19448-19457)使用低分辨率低温电子显微镜分析了由四聚体蛋白形成的多晶螺旋管,并为这些组装体中四聚体之间的界面制作了详细模型。由于确定正确螺旋对称性的固有歧义,我们表明,许多模型可能是错误的。本说明既强调了使用低温电子显微镜的巨大潜力,也强调了当无法达到近原子分辨率时,螺旋组装可能存在的陷阱。

相似文献

1
Cryo-EM is a powerful tool, but helical applications can have pitfalls.
Soft Matter. 2021 Mar 28;17(12):3291-3293. doi: 10.1039/d1sm00282a. Epub 2021 Mar 17.
2
Cryo-EM of Helical Polymers.
Chem Rev. 2022 Sep 14;122(17):14055-14065. doi: 10.1021/acs.chemrev.1c00753. Epub 2022 Feb 8.
3
Structural Analysis of Protein Complexes by Cryo-Electron Microscopy.
Methods Mol Biol. 2024;2715:431-470. doi: 10.1007/978-1-0716-3445-5_27.
7
Cryo-electron microscopy and the amazing race to atomic resolution.
Biochemistry. 2015 May 26;54(20):3133-41. doi: 10.1021/acs.biochem.5b00114. Epub 2015 May 14.
10
Near-atomic cryo-EM imaging of a small protein displayed on a designed scaffolding system.
Proc Natl Acad Sci U S A. 2018 Mar 27;115(13):3362-3367. doi: 10.1073/pnas.1718825115. Epub 2018 Mar 5.

引用本文的文献

1
Unravelling emergence of chirality in click-chemistry polymers down to the single-chain level.
Nat Commun. 2025 Jul 22;16(1):6761. doi: 10.1038/s41467-025-62041-0.
2
Purification and Cryo-Electron Microscopy Analysis of Bacterial Appendages.
Bio Protoc. 2024 Jul 20;14(14):e5032. doi: 10.21769/BioProtoc.5032.
3
Cryo-electron tomography related radiation-damage parameters for individual-molecule 3D structure determination.
Front Chem. 2022 Aug 30;10:889203. doi: 10.3389/fchem.2022.889203. eCollection 2022.
4
DeepTracer-ID: De novo protein identification from cryo-EM maps.
Biophys J. 2022 Aug 2;121(15):2840-2848. doi: 10.1016/j.bpj.2022.06.025. Epub 2022 Jun 28.
5
Helical Indexing in Real Space.
Sci Rep. 2022 May 17;12(1):8162. doi: 10.1038/s41598-022-11382-7.
6
Atomic structure of Lanreotide nanotubes revealed by cryo-EM.
Proc Natl Acad Sci U S A. 2022 Jan 25;119(4). doi: 10.1073/pnas.2120346119.

本文引用的文献

2
Single-particle cryo-EM at atomic resolution.
Nature. 2020 Nov;587(7832):152-156. doi: 10.1038/s41586-020-2829-0. Epub 2020 Oct 21.
3
Cryoelectron-Microscopic Structure of the pKpQIL Conjugative Pili from Carbapenem-Resistant Klebsiella pneumoniae.
Structure. 2020 Dec 1;28(12):1321-1328.e2. doi: 10.1016/j.str.2020.08.010. Epub 2020 Sep 10.
4
Artificial Intracellular Filaments.
Cell Rep Phys Sci. 2020 Jul 22;1(7). doi: 10.1016/j.xcrp.2020.100085. Epub 2020 Jul 1.
5
Chemically Controlled Helical Polymorphism in Protein Tubes by Selective Modulation of Supramolecular Interactions.
J Am Chem Soc. 2019 Dec 11;141(49):19448-19457. doi: 10.1021/jacs.9b10505. Epub 2019 Nov 25.
6
Ambidextrous helical nanotubes from self-assembly of designed helical hairpin motifs.
Proc Natl Acad Sci U S A. 2019 Jul 16;116(29):14456-14464. doi: 10.1073/pnas.1903910116. Epub 2019 Jul 1.
7
New tools for the analysis and validation of cryo-EM maps and atomic models.
Acta Crystallogr D Struct Biol. 2018 Sep 1;74(Pt 9):814-840. doi: 10.1107/S2059798318009324. Epub 2018 Sep 3.
8
Resolution advances in cryo-EM enable application to drug discovery.
Curr Opin Struct Biol. 2016 Dec;41:194-202. doi: 10.1016/j.sbi.2016.07.009. Epub 2016 Aug 20.
9
The Current Revolution in Cryo-EM.
Biophys J. 2016 Mar 8;110(5):1008-12. doi: 10.1016/j.bpj.2016.02.001.
10
Precise and Reversible Protein-Microtubule-Like Structure with Helicity Driven by Dual Supramolecular Interactions.
J Am Chem Soc. 2016 Feb 17;138(6):1932-7. doi: 10.1021/jacs.5b11733. Epub 2016 Feb 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验