Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN, 47907, USA.
Sci Rep. 2022 May 17;12(1):8162. doi: 10.1038/s41598-022-11382-7.
Biological structures with helical symmetries of distinct twist, rise, and axial symmetry are abundant and span a wide range of organisms and functions. Performing de novo helical indexing remains challenging because of the steep learning curve involved in Fourier space layer lines. The unknown amount of out-of-plane tilt and the existence of multiple conformations of the helices further complicate indexing. In this work, we introduce a real-space indexing method that leverages the prior knowledge of the tilt and in-plane angles of the helical filaments/tubes, robust ab initio 3D reconstruction capabilities in single particle cryo-EM to obtain asymmetric reconstructions, and automatic indexing of helical parameters directly from the asymmetric density maps. We validated this approach using data from multiple helical structures of distinct helical symmetries, diameters, flexibility, data qualities, and heterogeneous states. The fully automated tool we introduce for real space indexing, HI3D, uses the 2D lattice in the autocorrelation of the cylindrical projection of a 3D density map to identify the helical symmetry. HI3D can often successfully determine the helical parameters of a suboptimal 3D density map, including ab initio single particle asymmetric reconstructions and sub-tomogram averages, with intermediate evidence that can also help assess the map quality. Furthermore, this open-source HI3D is usable independently as a Web application that can be accessed free of installation. With these methods, de novo helical indexing will be significantly more accessible to researchers investigating structures of helical filaments/tubes using cryo-EM.
具有不同扭转、上升和轴向对称性的螺旋对称生物结构丰富多样,涵盖了广泛的生物和功能。由于傅里叶空间层线涉及陡峭的学习曲线,因此执行从头开始的螺旋索引仍然具有挑战性。螺旋的未知面外倾斜量和多个构象的存在进一步使索引复杂化。在这项工作中,我们引入了一种实空间索引方法,该方法利用螺旋丝/管的倾斜和平面角度的先验知识、单颗粒冷冻电镜中强大的从头 3D 重建能力来获得不对称重建,并直接从不对称密度图自动索引螺旋参数。我们使用来自不同螺旋对称性、直径、灵活性、数据质量和异质状态的多个螺旋结构的数据验证了这种方法。我们引入的用于实空间索引的全自动工具 HI3D 使用 3D 密度图的圆柱投影自相关中的 2D 晶格来识别螺旋对称性。HI3D 通常可以成功确定次优 3D 密度图的螺旋参数,包括从头开始的单颗粒不对称重建和子断层平均,中间证据也有助于评估地图质量。此外,这个开源的 HI3D 可以作为一个独立的 Web 应用程序使用,无需安装即可免费访问。有了这些方法,使用 cryo-EM 研究螺旋丝/管结构的研究人员将能够更轻松地进行从头开始的螺旋索引。