Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA.
Department of Chemistry, Emory University, Atlanta, GA, 30322, USA.
Nat Commun. 2021 Jan 18;12(1):407. doi: 10.1038/s41467-020-20689-w.
The exquisite structure-function correlations observed in filamentous protein assemblies provide a paradigm for the design of synthetic peptide-based nanomaterials. However, the plasticity of quaternary structure in sequence-space and the lability of helical symmetry present significant challenges to the de novo design and structural analysis of such filaments. Here, we describe a rational approach to design self-assembling peptide nanotubes based on controlling lateral interactions between protofilaments having an unusual cross-α supramolecular architecture. Near-atomic resolution cryo-EM structural analysis of seven designed nanotubes provides insight into the designability of interfaces within these synthetic peptide assemblies and identifies a non-native structural interaction based on a pair of arginine residues. This arginine clasp motif can robustly mediate cohesive interactions between protofilaments within the cross-α nanotubes. The structure of the resultant assemblies can be controlled through the sequence and length of the peptide subunits, which generates synthetic peptide filaments of similar dimensions to flagella and pili.
在丝状蛋白组装体中观察到的精细结构-功能相关性为设计基于合成肽的纳米材料提供了范例。然而,序列空间中四级结构的可变性和螺旋对称性的不稳定性对这些纤维的从头设计和结构分析提出了重大挑战。在这里,我们描述了一种基于控制具有不寻常的交叉-α超分子结构的原丝之间的侧向相互作用来设计自组装肽纳米管的合理方法。对七个设计的纳米管进行的近原子分辨率冷冻电镜结构分析为了解这些合成肽组装体内部界面的可设计性提供了线索,并确定了一种基于一对精氨酸残基的非天然结构相互作用。这种精氨酸扣环模体可以在交叉-α纳米管内的原丝之间稳健地介导内聚相互作用。通过肽亚基的序列和长度可以控制所得组装体的结构,从而生成类似于鞭毛和菌毛的类似尺寸的合成肽纤维。