Suppr超能文献

DeepTracer-ID:从头开始鉴定冷冻电镜映射中的蛋白质。

DeepTracer-ID: De novo protein identification from cryo-EM maps.

机构信息

Division of Computing and Software Systems, University of Washington Bothell, Bothell, Washington.

Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia.

出版信息

Biophys J. 2022 Aug 2;121(15):2840-2848. doi: 10.1016/j.bpj.2022.06.025. Epub 2022 Jun 28.

Abstract

The recent revolution in cryo-electron microscopy (cryo-EM) has made it possible to determine macromolecular structures directly from cell extracts. However, identifying the correct protein from the cryo-EM map is still challenging and often needs additional sequence information from other techniques, such as tandem mass spectrometry and/or bioinformatics. Here, we present DeepTracer-ID, a server-based approach to identify the candidate protein in a user-provided organism de novo from a cryo-EM map, without the need for additional information. Our method first uses DeepTracer to generate a protein backbone model that best represents the cryo-EM map, and this model is then searched against the library of AlphaFold2 predictions for all proteins in the given organism. This method is highly accurate and robust for high-resolution cryo-EM maps: in all 13 experimental maps tested blindly, DeepTracer-ID identified the correct proteins as the top candidates. Eight of the maps were of known structures, while the other five unpublished maps were validated by prior protein annotation and careful inspection of the model refined into the map. The program also showed promising results for both homomeric and heteromeric protein complexes. This platform is possible because of the recent breakthroughs in large-scale three-dimensional protein structure prediction.

摘要

最近冷冻电子显微镜(cryo-EM)的革命使得直接从细胞提取物中确定大分子结构成为可能。然而,从 cryo-EM 图谱中识别正确的蛋白质仍然具有挑战性,并且通常需要来自其他技术(如串联质谱和/或生物信息学)的附加序列信息。在这里,我们提出了 DeepTracer-ID,这是一种基于服务器的方法,可以从 cryo-EM 图谱中从头开始为用户提供的生物体识别候选蛋白质,而无需其他信息。我们的方法首先使用 DeepTracer 生成一个最佳代表 cryo-EM 图谱的蛋白质骨架模型,然后将该模型与给定生物体中所有蛋白质的 AlphaFold2 预测库进行搜索。这种方法对于高分辨率 cryo-EM 图谱非常准确和稳健:在所有 13 个盲测的实验图谱中,DeepTracer-ID 将正确的蛋白质识别为最佳候选物。其中 8 个图谱具有已知结构,而另外 5 个未公布的图谱则通过先前的蛋白质注释和对模型细化到图谱中的仔细检查进行了验证。该程序在同源和异源蛋白质复合物方面也显示出了有希望的结果。这个平台之所以成为可能,是因为最近在大规模三维蛋白质结构预测方面取得了突破。

相似文献

1
DeepTracer-ID: De novo protein identification from cryo-EM maps.
Biophys J. 2022 Aug 2;121(15):2840-2848. doi: 10.1016/j.bpj.2022.06.025. Epub 2022 Jun 28.
2
Smart de novo Macromolecular Structure Modeling from Cryo-EM Maps.
J Mol Biol. 2023 May 1;435(9):167967. doi: 10.1016/j.jmb.2023.167967. Epub 2023 Jan 18.
3
DeepTracer for fast de novo cryo-EM protein structure modeling and special studies on CoV-related complexes.
Proc Natl Acad Sci U S A. 2021 Jan 12;118(2). doi: 10.1073/pnas.2017525118.
4
Fast and automated protein-DNA/RNA macromolecular complex modeling from cryo-EM maps.
Brief Bioinform. 2023 Mar 19;24(2). doi: 10.1093/bib/bbac632.
5
The accuracy of protein models automatically built into cryo-EM maps with ARP/wARP.
Acta Crystallogr D Struct Biol. 2021 Feb 1;77(Pt 2):142-150. doi: 10.1107/S2059798320016332. Epub 2021 Jan 26.
6
CR-I-TASSER: assemble protein structures from cryo-EM density maps using deep convolutional neural networks.
Nat Methods. 2022 Feb;19(2):195-204. doi: 10.1038/s41592-021-01389-9. Epub 2022 Feb 7.
7
De Novo modeling in cryo-EM density maps with Pathwalking.
J Struct Biol. 2016 Dec;196(3):289-298. doi: 10.1016/j.jsb.2016.06.004. Epub 2016 Jul 17.
8
Building Protein Atomic Models from Cryo-EM Density Maps and Residue Co-Evolution.
Biomolecules. 2022 Sep 13;12(9):1290. doi: 10.3390/biom12091290.
9
Deep Learning to Predict Protein Backbone Structure from High-Resolution Cryo-EM Density Maps.
Sci Rep. 2020 Mar 9;10(1):4282. doi: 10.1038/s41598-020-60598-y.
10
Current approaches for the fitting and refinement of atomic models into cryo-EM maps using CCP-EM.
Acta Crystallogr D Struct Biol. 2018 Jun 1;74(Pt 6):492-505. doi: 10.1107/S2059798318007313. Epub 2018 May 30.

引用本文的文献

1
A family of tubular pili from harmful algal bloom forming cyanobacterium Microcystis aeruginosa.
Nat Commun. 2025 Aug 29;16(1):8082. doi: 10.1038/s41467-025-63379-1.
5
Finding antibodies in cryo-EM maps with CrAI.
Bioinformatics. 2025 May 6;41(5). doi: 10.1093/bioinformatics/btaf157.
6
Frontiers in integrative structural modeling of macromolecular assemblies.
QRB Discov. 2025 Jan 22;6:e3. doi: 10.1017/qrd.2024.15. eCollection 2025.
7
Structural diversity of axonemes across mammalian motile cilia.
Nature. 2025 Jan;637(8048):1170-1177. doi: 10.1038/s41586-024-08337-5. Epub 2025 Jan 1.
8
Cryo-EM-based discovery of a pathogenic parvovirus causing epidemic mortality by black wasting disease in farmed beetles.
Cell. 2024 Oct 3;187(20):5604-5619.e14. doi: 10.1016/j.cell.2024.07.053. Epub 2024 Aug 28.
9
Two distinct archaeal type IV pili structures formed by proteins with identical sequence.
Nat Commun. 2024 Jun 14;15(1):5049. doi: 10.1038/s41467-024-45062-z.
10
Structural determination and modeling of ciliary microtubules.
Acta Crystallogr D Struct Biol. 2024 Apr 1;80(Pt 4):220-231. doi: 10.1107/S2059798324001815. Epub 2024 Mar 7.

本文引用的文献

1
ColabFold: making protein folding accessible to all.
Nat Methods. 2022 Jun;19(6):679-682. doi: 10.1038/s41592-022-01488-1. Epub 2022 May 30.
2
Spindle-shaped archaeal viruses evolved from rod-shaped ancestors to package a larger genome.
Cell. 2022 Apr 14;185(8):1297-1307.e11. doi: 10.1016/j.cell.2022.02.019. Epub 2022 Mar 23.
3
Cryo-EM of Helical Polymers.
Chem Rev. 2022 Sep 14;122(17):14055-14065. doi: 10.1021/acs.chemrev.1c00753. Epub 2022 Feb 8.
4
Cryo-EM and artificial intelligence visualize endogenous protein community members.
Structure. 2022 Apr 7;30(4):575-589.e6. doi: 10.1016/j.str.2022.01.001. Epub 2022 Jan 31.
5
: a neural-network-based approach for identification of unknown proteins in X-ray crystallography and cryo-EM.
IUCrJ. 2021 Dec 1;9(Pt 1):86-97. doi: 10.1107/S2052252521011088. eCollection 2022 Jan 1.
7
New tools for automated cryo-EM single-particle analysis in RELION-4.0.
Biochem J. 2021 Dec 22;478(24):4169-4185. doi: 10.1042/BCJ20210708.
8
Highly accurate protein structure prediction with AlphaFold.
Nature. 2021 Aug;596(7873):583-589. doi: 10.1038/s41586-021-03819-2. Epub 2021 Jul 15.
10
Structures of mammalian RNA polymerase II pre-initiation complexes.
Nature. 2021 Jun;594(7861):124-128. doi: 10.1038/s41586-021-03554-8. Epub 2021 Apr 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验