Calvo Galve Néstor, Abrishamkar Afshin, Sorrenti Alessandro, Di Rienzo Lorenzo, Satta Mauro, D'Abramo Marco, Coronado Eugenio, de Mello Andrew J, Mínguez Espallargas Guillermo, Puigmartí-Luis Josep
Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, C/ Catedrático José Beltrán, 2, 46980, Paterna, Spain.
Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland.
Angew Chem Int Ed Engl. 2021 Jul 12;60(29):15920-15927. doi: 10.1002/anie.202101611. Epub 2021 May 19.
Coordination polymers (CPs), including metal-organic frameworks (MOFs), are crystalline materials with promising applications in electronics, magnetism, catalysis, and gas storage/separation. However, the mechanisms and pathways underlying their formation remain largely undisclosed. Herein, we demonstrate that diffusion-controlled mixing of reagents at the very early stages of the crystallization process (i.e., within ≈40 ms), achieved by using continuous-flow microfluidic devices, can be used to enable novel crystallization pathways of a prototypical spin-crossover MOF towards its thermodynamic product. In particular, two distinct and unprecedented nucleation-growth pathways were experimentally observed when crystallization was triggered under microfluidic mixing. Full-atom molecular dynamics simulations also confirm the occurrence of these two distinct pathways during crystal growth. In sharp contrast, a crystallization by particle attachment was observed under bulk (turbulent) mixing. These unprecedented results provide a sound basis for understanding the growth of CPs and open up new avenues for the engineering of porous materials by using out-of-equilibrium conditions.
配位聚合物(CPs),包括金属有机框架(MOFs),是一类晶体材料,在电子学、磁学、催化以及气体存储/分离等领域有着广阔的应用前景。然而,其形成的机制和途径在很大程度上仍未被揭示。在此,我们证明,通过使用连续流微流控装置,在结晶过程的最初阶段(即约40毫秒内)实现试剂的扩散控制混合,可用于使典型的自旋交叉MOF形成新的结晶途径以生成其热力学产物。特别是,当在微流控混合条件下引发结晶时,实验观察到了两种截然不同且前所未有的成核 - 生长途径。全原子分子动力学模拟也证实了晶体生长过程中这两种不同途径的存在。与之形成鲜明对比的是,在本体(湍流)混合条件下观察到的是通过颗粒附着进行的结晶。这些前所未有的结果为理解CPs的生长提供了坚实的基础,并为利用非平衡条件设计多孔材料开辟了新途径。