Suppr超能文献

贝叶斯时间分解多维时间序列预测。

Bayesian Temporal Factorization for Multidimensional Time Series Prediction.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2022 Sep;44(9):4659-4673. doi: 10.1109/TPAMI.2021.3066551. Epub 2022 Aug 4.

Abstract

Large-scale and multidimensional spatiotemporal data sets are becoming ubiquitous in many real-world applications such as monitoring urban traffic and air quality. Making predictions on these time series has become a critical challenge due to not only the large-scale and high-dimensional nature but also the considerable amount of missing data. In this paper, we propose a Bayesian temporal factorization (BTF) framework for modeling multidimensional time series-in particular spatiotemporal data-in the presence of missing values. By integrating low-rank matrix/tensor factorization and vector autoregressive (VAR) process into a single probabilistic graphical model, this framework can characterize both global and local consistencies in large-scale time series data. The graphical model allows us to effectively perform probabilistic predictions and produce uncertainty estimates without imputing those missing values. We develop efficient Gibbs sampling algorithms for model inference and model updating for real-time prediction and test the proposed BTF framework on several real-world spatiotemporal data sets for both missing data imputation and multi-step rolling prediction tasks. The numerical experiments demonstrate the superiority of the proposed BTF approaches over existing state-of-the-art methods.

摘要

大规模和多维时空数据集在许多实际应用中变得无处不在,例如监测城市交通和空气质量。由于大规模和高维的性质以及相当多的数据缺失,对这些时间序列进行预测已成为一个关键挑战。在本文中,我们提出了一种贝叶斯时间分解(BTF)框架,用于在存在缺失值的情况下对多维时间序列进行建模,特别是时空数据。通过将低秩矩阵/张量分解和向量自回归(VAR)过程集成到单个概率图形模型中,该框架可以描述大规模时间序列数据中的全局和局部一致性。图形模型允许我们在不插补那些缺失值的情况下有效地进行概率预测并生成不确定性估计。我们为模型推断和实时预测的模型更新开发了有效的 Gibbs 采样算法,并在几个真实的时空数据集上测试了所提出的 BTF 框架,用于缺失数据插补和多步滚动预测任务。数值实验证明了所提出的 BTF 方法优于现有的最先进方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验