Suppr超能文献

多源异构传感器处理与配电网:简要综述与潜在方向

Multisource Heterogeneous Sensor Processing Meets Distribution Networks: Brief Review and Potential Directions.

作者信息

Wang Junliang, Zhang Ying

机构信息

School of Microelectronics (School of Integrated Circuits), Nanjing University of Science and Technology, Nanjing 210094, China.

出版信息

Sensors (Basel). 2025 Jul 3;25(13):4146. doi: 10.3390/s25134146.

Abstract

The progressive proliferation of sensor deployment in distribution networks (DNs), propelled by the dual drivers of power automation and ubiquitous IoT infrastructure development, has precipitated exponential growth in real-time data generated by multisource heterogeneous (MSH) sensors within multilayer grid architectures. This phenomenon presents dual implications: large-scale datasets offer an enhanced foundation for reliability assessment and dispatch planning in DNs; the dramatic escalation in data volume imposes demands on the computational precision and response speed of traditional evaluation approaches. The identification of critical influencing factors under extreme operating conditions, coupled with dynamic assessment and prediction of DN reliability through MSH data approaches, has emerged as a pressing challenge to address. Through a brief analysis of existing technologies and algorithms, this article reviews the technological development of MSH data analysis in DNs. By integrating the stability advantages of conventional approaches in practice with the computational adaptability of artificial intelligence, this article focuses on discussing key approaches for MSH data processing and assessment. Based on the characteristics of DN data, e.g., diverse sources, heterogeneous structures, and complex correlations, this article proposes several practical future directions. It is expected to provide insights for practitioners in power systems and sensor data processing that offer technical inspirations for intelligent, reliable, and stable next-generation DN construction.

摘要

在电力自动化和无处不在的物联网基础设施发展的双重推动下,配电网(DN)中传感器部署的逐步增加,促使多层电网架构内多源异构(MSH)传感器产生的实时数据呈指数级增长。这种现象具有双重影响:大规模数据集为配电网的可靠性评估和调度规划提供了更好的基础;数据量的急剧增加对传统评估方法的计算精度和响应速度提出了要求。识别极端运行条件下的关键影响因素,以及通过MSH数据方法对配电网可靠性进行动态评估和预测,已成为亟待解决的挑战。通过对现有技术和算法的简要分析,本文回顾了配电网中MSH数据分析的技术发展。通过将传统方法在实践中的稳定性优势与人工智能的计算适应性相结合,本文重点讨论了MSH数据处理和评估的关键方法。基于配电网数据的特点,如来源多样、结构异构和相关性复杂,本文提出了几个实际的未来发展方向。期望能为电力系统和传感器数据处理的从业者提供见解,为智能、可靠和稳定的下一代配电网建设提供技术启示。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63ca/12252198/ac10a0480cc6/sensors-25-04146-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验