Suppr超能文献

用于单张雨天图像恢复的注意力特征细化网络

Attentive Feature Refinement Network for Single Rainy Image Restoration.

作者信息

Wang Guoqing, Sun Changming, Sowmya Arcot

出版信息

IEEE Trans Image Process. 2021;30:3734-3747. doi: 10.1109/TIP.2021.3064229. Epub 2021 Mar 23.

Abstract

Despite the fact that great progress has been made on single image deraining tasks, it is still challenging for existing models to produce satisfactory results directly, and it often requires a single or multiple refinement stages to gradually improve the quality. However, in this paper, we demonstrate that existing image-level refinement with a stage-independent learning design is problematic with the side effect of over/under-deraining. To resolve this issue, we for the first time propose the mechanism of learning to carry out refinement on the unsatisfactory features, and propose a novel attentive feature refinement (AFR) module. Specifically, AFR is designed as a two-branched network for simultaneous rain-distribution-aware attention map learning and attention guided hierarchy-preserving feature refinement. Guided by task-specific attention, coarse features are progressively refined to better model the diversified rainy effects. By using a separable convolution as the basic component, our AFR module introduces little computation overhead and can be readily integrated into most rainy-to-clean image translation networks for achieving better deraining results. By incorporating a series of AFR modules into a general encoder-decoder network, AFR-Net is constructed for deraining and it achieves new state-of-the-art results on both synthetic and real images. Furthermore, by using AFR-Net as a teacher model, we explore the use of knowledge distillation to successfully learn a student model that is also able to achieve state-of-the-art results but with a much faster inference speed (i.e., it only takes 0.08 second to process a 512×512 rainy image). Code and pre-trained models are available at 〈 https://github.com/RobinCSIRO/AFR-Net 〉 .

摘要

尽管在单图像去雨任务上已经取得了很大进展,但现有模型直接产生令人满意的结果仍然具有挑战性,通常需要一个或多个细化阶段来逐步提高质量。然而,在本文中,我们证明了现有的与阶段无关的学习设计的图像级细化存在问题,会产生过去除/欠去除雨的副作用。为了解决这个问题,我们首次提出了对不满意特征进行细化的学习机制,并提出了一种新颖的注意力特征细化(AFR)模块。具体来说,AFR被设计为一个双分支网络,用于同时学习雨分布感知注意力图和注意力引导的层次保留特征细化。在特定任务注意力的引导下,粗粒度特征被逐步细化,以更好地模拟多样化的降雨效果。通过使用深度可分离卷积作为基本组件,我们的AFR模块引入的计算开销很小,并且可以很容易地集成到大多数从有雨图像到无雨图像的翻译网络中,以获得更好的去雨结果。通过将一系列AFR模块合并到一个通用的编码器-解码器网络中,构建了用于去雨的AFR-Net,并在合成图像和真实图像上都取得了新的最优结果。此外,通过将AFR-Net用作教师模型,我们探索了使用知识蒸馏来成功学习一个学生模型,该模型也能够取得最优结果,但推理速度要快得多(即处理一张512×512的有雨图像只需要0.08秒)。代码和预训练模型可在〈https://github.com/RobinCSIRO/AFR-Net〉获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验