Suppr超能文献

TriATNE:用于网络嵌入的三方对抗式训练。

TriATNE: Tripartite Adversarial Training for Network Embeddings.

出版信息

IEEE Trans Cybern. 2022 Sep;52(9):9634-9645. doi: 10.1109/TCYB.2021.3061771. Epub 2022 Aug 18.

Abstract

Existing network embedding algorithms based on generative adversarial networks (GANs) improve the robustness of node embeddings by selecting high-quality negative samples with the generator to play against the discriminator. Since most of the negative samples can be easily discriminated from positive samples in graphs, their poor competitiveness weakens the function of the generator. Inspired by the sales skills in the market, in this article, we present tripartite adversarial training for network embeddings (TriATNE), a novel adversarial learning framework for learning stable and robust node embeddings. TriATNE consists of three players: 1) producer; 2) seller; and 3) customer. The producer strives to learn the representation of each sample (node pair), making it easy for the customer to differentiate between the positive and the negative, while the seller tries to confuse the customer by selecting realistic-looking samples. The customer, a biased evaluation metric, provides feedback for training the producer and the seller. To further enhance the robustness of node embedding, we model the customer as a two-layer neural network, where each unit in the hidden layer can be regarded as a customer with different preferences. TriATNE also plays against the producer by adjusting the weight of each customer. We test the performance of TriATNE on two common tasks: classification as well as link prediction. The experimental results on various publicly available datasets show that TriATNE can exploit the network structure well.

摘要

现有的基于生成对抗网络(GAN)的网络嵌入算法通过使用生成器选择高质量的负样本与判别器对抗,从而提高节点嵌入的鲁棒性。由于在图中大多数负样本可以很容易地与正样本区分开来,因此它们较差的竞争力削弱了生成器的功能。受市场销售技巧的启发,本文提出了用于网络嵌入的三方对抗训练(TriATNE),这是一种用于学习稳定和鲁棒节点嵌入的新的对抗学习框架。TriATNE 由三个参与者组成:1)生产者;2)销售者;3)客户。生产者努力学习每个样本(节点对)的表示,使客户很容易区分正样本和负样本,而销售者则试图通过选择逼真的样本来混淆客户。客户是一个有偏见的评估指标,为训练生产者和销售者提供反馈。为了进一步提高节点嵌入的鲁棒性,我们将客户建模为一个两层神经网络,其中隐藏层中的每个单元都可以看作是具有不同偏好的客户。TriATNE 还通过调整每个客户的权重与生产者对抗。我们在两个常见任务上测试了 TriATNE 的性能:分类和链接预测。在各种公开可用的数据集上的实验结果表明,TriATNE 可以很好地利用网络结构。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验