Halim Ahmed, Abdellatif A, Awad Mohammed I, Atia Mostafa R A
Mechanical Engineering Department, Arab Academy for Science, Technology and Maritime Transport, Cairo, Egypt.
Mechatronics Engineering Department, Faculty of Engineering, AinShams University, Cairo, Egypt.
Proc Inst Mech Eng H. 2021 Jun;235(6):676-687. doi: 10.1177/09544119211001238. Epub 2021 Mar 17.
This paper aims to enhance the accuracy of human gait prediction using machine learning algorithms. Three classifiers are used in this paper: XGBoost, Random Forest, and SVM. A predefined dataset is used for feature extraction and classification. Gait prediction is determined during several locomotion activities: sitting (S), level walking (LW), ramp ascend (RA), ramp descend (RD), stair ascend (SA), stair descend (SD), and standing (ST). The results are gained for steady-state (SS) and overall (full) gait cycle. Two sets of sensors are used. The first set uses inertial measurement units only. The second set uses inertial measurement units, electromyography, and electro-goniometers. The comparison is based on prediction accuracy and prediction time. In addition, a comparison between the prediction times of XGBoost with CPU and GPU is introduced due to the easiness of using XGBoost with GPU. The results of this paper can help to choose a classifier for gait prediction that can obtain acceptable accuracy with fewer types of sensors.
本文旨在使用机器学习算法提高人体步态预测的准确性。本文使用了三种分类器:XGBoost、随机森林和支持向量机。使用预定义的数据集进行特征提取和分类。在几种运动活动中确定步态预测:坐着(S)、水平行走(LW)、斜坡上升(RA)、斜坡下降(RD)、楼梯上升(SA)、楼梯下降(SD)和站立(ST)。针对稳态(SS)和整个步态周期获得了结果。使用了两组传感器。第一组仅使用惯性测量单元。第二组使用惯性测量单元、肌电图和电子测角仪。比较基于预测准确性和预测时间。此外,由于使用XGBoost与GPU的便捷性,还介绍了XGBoost在CPU和GPU上的预测时间比较。本文的结果有助于为步态预测选择一种分类器,该分类器可以使用较少类型的传感器获得可接受的准确性。