Suppr超能文献

住院成年患者中阿片类药物滥用机器学习分类器的外部验证。

External validation of an opioid misuse machine learning classifier in hospitalized adult patients.

机构信息

Division of Health Informatics and Data Science, Loyola University Chicago, Maywood, IL, USA.

Department of Medicine, University of Wisconsin, 1685 Highland Avenue, Madison, WI, 53705, USA.

出版信息

Addict Sci Clin Pract. 2021 Mar 17;16(1):19. doi: 10.1186/s13722-021-00229-7.

Abstract

BACKGROUND

Opioid misuse screening in hospitals is resource-intensive and rarely done. Many hospitalized patients are never offered opioid treatment. An automated approach leveraging routinely captured electronic health record (EHR) data may be easier for hospitals to institute. We previously derived and internally validated an opioid classifier in a separate hospital setting. The aim is to externally validate our previously published and open-source machine-learning classifier at a different hospital for identifying cases of opioid misuse.

METHODS

An observational cohort of 56,227 adult hospitalizations was examined between October 2017 and December 2019 during a hospital-wide substance use screening program with manual screening. Manually completed Drug Abuse Screening Test served as the reference standard to validate a convolutional neural network (CNN) classifier with coded word embedding features from the clinical notes of the EHR. The opioid classifier utilized all notes in the EHR and sensitivity analysis was also performed on the first 24 h of notes. Calibration was performed to account for the lower prevalence than in the original cohort.

RESULTS

Manual screening for substance misuse was completed in 67.8% (n = 56,227) with 1.1% (n = 628) identified with opioid misuse. The data for external validation included 2,482,900 notes with 67,969 unique clinical concept features. The opioid classifier had an AUC of 0.99 (95% CI 0.99-0.99) across the encounter and 0.98 (95% CI 0.98-0.99) using only the first 24 h of notes. In the calibrated classifier, the sensitivity and positive predictive value were 0.81 (95% CI 0.77-0.84) and 0.72 (95% CI 0.68-0.75). For the first 24 h, they were 0.75 (95% CI 0.71-0.78) and 0.61 (95% CI 0.57-0.64).

CONCLUSIONS

Our opioid misuse classifier had good discrimination during external validation. Our model may provide a comprehensive and automated approach to opioid misuse identification that augments current workflows and overcomes manual screening barriers.

摘要

背景

医院的阿片类药物滥用筛查需要耗费大量资源,且很少进行。许多住院患者从未接受过阿片类药物治疗。利用常规捕获的电子健康记录(EHR)数据的自动化方法可能更容易被医院采用。我们之前在另一个医院环境中推导并内部验证了一种阿片类药物分类器。目的是在另一家医院验证我们之前发表的开源机器学习分类器,以识别阿片类药物滥用病例。

方法

在 2017 年 10 月至 2019 年 12 月期间,在一项全医院范围的物质使用筛查计划中,对 56227 例成年住院患者进行了观察性队列研究,该计划进行了人工筛查。人工完成的药物滥用筛查测试作为参考标准,用于验证来自 EHR 临床记录的编码词嵌入特征的卷积神经网络(CNN)分类器。阿片类药物分类器利用了 EHR 中的所有记录,还对前 24 小时的记录进行了敏感性分析。为了弥补原始队列中较低的患病率,进行了校准。

结果

完成了物质滥用的人工筛查,占 67.8%(n=56227),其中 1.1%(n=628)被确定为阿片类药物滥用。外部验证的数据包括 2482900 条记录和 67969 个独特的临床概念特征。阿片类药物分类器在整个就诊过程中的 AUC 为 0.99(95%CI 0.99-0.99),在前 24 小时的 AUC 为 0.98(95%CI 0.98-0.99)。在经过校准的分类器中,敏感性和阳性预测值分别为 0.81(95%CI 0.77-0.84)和 0.72(95%CI 0.68-0.75)。在前 24 小时,它们分别为 0.75(95%CI 0.71-0.78)和 0.61(95%CI 0.57-0.64)。

结论

我们的阿片类药物滥用分类器在外部验证中具有良好的区分度。我们的模型可能提供了一种全面的自动化阿片类药物滥用识别方法,增强了当前的工作流程,并克服了人工筛查的障碍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/228b/7972240/91d7581c97db/13722_2021_229_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验