Suppr超能文献

健康可穿戴设备对超重/肥胖合并慢性共病患者体重和 BMI 的影响:系统评价和网络荟萃分析。

Health wearable devices for weight and BMI reduction in individuals with overweight/obesity and chronic comorbidities: systematic review and network meta-analysis.

机构信息

School of Kinesiology, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA.

School of Kinesiology, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA

出版信息

Br J Sports Med. 2021 Aug;55(16):917-925. doi: 10.1136/bjsports-2020-103594. Epub 2021 Mar 17.

Abstract

OBJECTIVE

To analyse the comparative effectiveness of different health wearable-based physical activity (PA) promotion intervention strategies against each other and control for reducing body weight and body mass index (BMI) in individuals with overweight/obesity and chronic comorbidities.

DESIGN

Systematic review and network meta-analysis (PROSPERO identifier: CRD42020158191).

DATA SOURCES

We performed two independent searches from December 2019 to September 2020 in PubMed, MEDLINE, Scopus, Web of Science, Central Register of Controlled Trials, EMBASE and PsycINFO databases for articles published in English between 2007 and 2020.

ELIGIBILITY CRITERIA FOR SELECTING STUDIES

Inclusion criteria were based on the PICOS framework. We included randomised controlled trials of health wearable-based interventions using two or more PA intervention arms/strategies and compared their effects on participants' body weight (kg) and BMI (kg/m) with a control group. Data were analysed using a Bayesian network meta-analysis to directly and indirectly compare the effects of the six different intervention strategies (comparators). The six comparators were: (1) control group (ie, usual care, waitlist); (2) comparison group (ie, traditional, non-health wearable PA interventions); (3) commercial health wearable-only intervention (eg, Fitbit, Polar M400); (4) research grade health wearable-only intervention (ie, accelerometers or pedometers); (5) multicomponent commercial health wearable intervention (eg, Fitbit + nutrition counselling); and (6) multicomponent research grade health wearable intervention. The results were reported as standardised mean differences (SMDs) with associated 95% credible intervals (CrIs).

RESULTS

From 641 screened records, 31 studies were included. For body weight reduction in individuals with overweight/obesity and chronic comorbidities, accelerometer/pedometer-only (SMD -4.44, 95% CrI -8.94 to 0.07) and commercial health wearable-only (SMD -2.76, 95% CrI -4.80 to -0.81) intervention strategies were the most effective compared with the three other treatments and control. For BMI reduction, multicomponent accelerometer/pedometer (SMD -3.43, 95% CrI -4.94 to -2.09) and commercial health wearable-only (SMD -1.99, 95% CrI -4.95 to 0.96) intervention strategies were the most effective compared with the other four conditions.

CONCLUSION

Health wearable devices are effective intervention tools/strategies for reducing body weight and BMI in individuals with overweight/obesity and chronic comorbidities.

摘要

目的

分析不同基于健康可穿戴设备的体力活动(PA)促进干预策略之间的相对有效性,并控制超重/肥胖和慢性合并症个体的体重和体重指数(BMI)。

设计

系统评价和网络荟萃分析(PROSPERO 标识符:CRD42020158191)。

数据来源

我们于 2019 年 12 月至 2020 年 9 月在 PubMed、MEDLINE、Scopus、Web of Science、中央对照试验登记处、EMBASE 和 PsycINFO 数据库中进行了两次独立搜索,检索了 2007 年至 2020 年期间发表的英文文章。

研究选择的入选标准

入选标准基于 PICOS 框架。我们纳入了使用两种或多种 PA 干预臂/策略的基于健康可穿戴设备的干预的随机对照试验,并将其与对照组参与者的体重(kg)和 BMI(kg/m)进行比较。使用贝叶斯网络荟萃分析直接和间接比较六种不同干预策略(对照)的效果。这六种对照分别是:(1)对照组(即常规护理,候补);(2)对照组(即传统、非健康可穿戴 PA 干预);(3)商业健康可穿戴设备单一干预(如 Fitbit、Polar M400);(4)研究级健康可穿戴设备单一干预(即加速度计或计步器);(5)多组件商业健康可穿戴设备干预(如 Fitbit + 营养咨询);(6)多组件研究级健康可穿戴设备干预。结果以标准化均数差异(SMD)和相关 95%可信区间(CrI)表示。

结果

从 641 条筛选记录中,纳入了 31 项研究。对于超重/肥胖和慢性合并症个体的体重减轻,与其他三种治疗方法和对照组相比,加速度计/计步器单一干预(SMD -4.44,95% CrI -8.94 至 0.07)和商业健康可穿戴设备单一干预(SMD -2.76,95% CrI -4.80 至 -0.81)策略最为有效。对于 BMI 减轻,与其他四种情况相比,多组件加速度计/计步器(SMD -3.43,95% CrI -4.94 至 -2.09)和商业健康可穿戴设备单一干预(SMD -1.99,95% CrI -4.95 至 0.96)策略最为有效。

结论

健康可穿戴设备是超重/肥胖和慢性合并症个体减轻体重和 BMI 的有效干预工具/策略。

相似文献

7
Weight loss interventions for chronic asthma.慢性哮喘的体重减轻干预措施。
Cochrane Database Syst Rev. 2012 Jul 11;2012(7):CD009339. doi: 10.1002/14651858.CD009339.pub2.

引用本文的文献

本文引用的文献

6
Scientists rise up against statistical significance.科学家们奋起反对统计显著性。
Nature. 2019 Mar;567(7748):305-307. doi: 10.1038/d41586-019-00857-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验