Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium.
VIB-KU Leuven Center for Microbiology, KU Leuven, Leuven, Belgium.
mSphere. 2021 Mar 17;6(2):6/2/e00146-21. doi: 10.1128/mSphere.00146-21.
Fluorescence microscopy is a standard research tool in many fields, although collecting reliable images can be difficult in systems characterized by low expression levels and/or high background fluorescence. We present the combination of a photochromic fluorescent protein and stochastic optical fluctuation imaging (SOFI) to deliver suppression of the background fluorescence. This strategy makes it possible to resolve lowly or endogenously expressed proteins, as we demonstrate for Gcn5, a histone acetyltransferase required for complete virulence, and Erg11, the target of the azole antifungal agents in the fungal pathogen We expect that our method can be readily used for sensitive fluorescence measurements in systems characterized by high background fluorescence. Understanding the spatial and temporal organization of proteins of interest is key to unraveling cellular processes and identifying novel possible antifungal targets. Only a few therapeutic targets have been discovered in , and resistance mechanisms against these therapeutic agents are rapidly acquired. Fluorescence microscopy is a valuable tool to investigate molecular processes and assess the localization of possible antifungal targets. Unfortunately, fluorescence microscopy of suffers from extensive autofluorescence. In this work, we present the use of a photochromic fluorescent protein and stochastic optical fluctuation imaging to enable the imaging of lowly expressed proteins in through the suppression of autofluorescence. This method can be applied in research or adapted for other fungal systems, allowing the visualization of intricate processes.
荧光显微镜是许多领域的标准研究工具,尽管在表达水平低和/或背景荧光高的系统中,收集可靠的图像可能很困难。我们提出了将光致变色荧光蛋白与随机光学波动成像(SOFI)相结合,以抑制背景荧光。这种策略使得可以解析低表达或内源性表达的蛋白质,正如我们为 Gcn5 所证明的那样,Gcn5 是一种组蛋白乙酰转移酶,是完全毒力所必需的,以及 Erg11,它是真菌病原体唑类抗真菌药物的靶标。我们预计我们的方法可以很容易地用于具有高背景荧光的系统中的敏感荧光测量。了解感兴趣的蛋白质的空间和时间组织是揭示细胞过程和识别新的可能抗真菌靶标的关键。在中仅发现了少数治疗靶标,并且对这些治疗剂的耐药机制迅速获得。荧光显微镜是研究分子过程和评估可能的抗真菌靶标定位的有价值的工具。不幸的是,荧光显微镜在中受到广泛的自发荧光的影响。在这项工作中,我们提出了使用光致变色荧光蛋白和随机光学波动成像来通过抑制自发荧光来实现低表达蛋白在 中的成像。该方法可用于 研究或适应其他真菌系统,允许可视化复杂的过程。