Clinic and Research Center of Tuberculosis, Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Institute for Advanced Study, Tongji University School of Medicine, Shanghai, China.
Wuhan YZY Biopharma Co., Ltd, Biolake, Wuhan, China.
Front Immunol. 2021 Feb 26;12:599641. doi: 10.3389/fimmu.2021.599641. eCollection 2021.
It remains undefined whether a subset of CD4+ T cells can function as fast-acting cells to control (Mtb) infection. Here we show that the primary CD4+CD161+ T-cell subset, not CD4+CD161-, in unexposed healthy humans fast acted as unconventional T cells capable of inhibiting intracellular Mtb and BCG growth upon exposure to infected autologous and allogeneic macrophages or lung epithelial A549 cells. Such inhibition coincided with the ability of primary CD4+CD161+ T cells to rapidly express/secrete anti-TB cytokines including IFN-γ, TNF-α, IL-17, and perforin upon exposure to Mtb. Mechanistically, blockades of CD161 pathway, perforin or IFN-γ by blocking mAbs abrogated the ability of CD4+CD161+ T cells to inhibit intracellular mycobacterial growth. Pre-treatment of infected macrophages with inhibitors of autophagy also blocked the CD4+CD161+ T cell-mediated growth inhibition of mycobacteria. Furthermore, adoptive transfer of human CD4+CD161+ T cells conferred protective immunity against mycobacterial infection in SCID mice. Surprisingly, CD4+CD161+ T cells in TB patients exhibited a loss or reduction of their capabilities to produce perforin/IFN-γ and to inhibit intracellular growth of mycobacteria in infected macrophages. These immune dysfunctions were consistent with PD1/Tim3 up-regulation on CD4+CD161+ T cells in active tuberculosis patients, and the blockade of PD1/Tim3 on this subset cells enhanced the inhibition of intracellular mycobacteria survival. Thus, these findings suggest that a fast-acting primary CD4+CD161+T-cell subset in unexposed humans employs the CD161 pathway, perforin, and IFN-γ/autophagy to inhibit the growth of intracellular mycobacteria, thereby distinguishing them from the slow adaptive responses of conventional CD4+ T cells. The presence of fast-acting CD4+CD161+ T-cell that inhibit mycobacterial growth in unexposed humans but not TB patients also implicates the role of these cells in protective immunity against initial Mtb infection.
尚未明确 CD4+T 细胞亚群是否能够作为快速作用细胞来控制(Mtb)感染。在这里,我们发现未接触过的健康人群中的主要 CD4+CD161+T 细胞亚群(而非 CD4+CD161-)能够快速发挥非传统 T 细胞的作用,在接触感染的自体和同种异体巨噬细胞或肺上皮 A549 细胞时,能够抑制细胞内 Mtb 和 BCG 的生长。这种抑制作用与主要 CD4+CD161+T 细胞在接触 Mtb 后能够快速表达/分泌抗结核细胞因子(包括 IFN-γ、TNF-α、IL-17 和穿孔素)的能力一致。从机制上讲,通过阻断 mAb 阻断 CD161 途径、穿孔素或 IFN-γ,可消除 CD4+CD161+T 细胞抑制细胞内分枝杆菌生长的能力。预先用自噬抑制剂处理感染的巨噬细胞也可阻断 CD4+CD161+T 细胞介导的分枝杆菌生长抑制作用。此外,人 CD4+CD161+T 细胞的过继转移可在 SCID 小鼠中赋予针对分枝杆菌感染的保护性免疫。令人惊讶的是,TB 患者的 CD4+CD161+T 细胞表现出丧失或降低产生穿孔素/IFN-γ和抑制感染巨噬细胞内分枝杆菌生长的能力。这些免疫功能障碍与活动性结核病患者中 CD4+CD161+T 细胞上 PD1/Tim3 的上调一致,并且阻断该亚群细胞上的 PD1/Tim3 增强了对细胞内分枝杆菌存活的抑制作用。因此,这些发现表明,未接触过的人类中存在快速作用的主要 CD4+CD161+T 细胞亚群,利用 CD161 途径、穿孔素和 IFN-γ/自噬来抑制细胞内分枝杆菌的生长,从而将其与传统 CD4+T 细胞的缓慢适应性反应区分开来。未接触过的人类中存在能够抑制分枝杆菌生长的快速作用 CD4+CD161+T 细胞,但 TB 患者中不存在这种细胞,这表明这些细胞在针对初始 Mtb 感染的保护性免疫中发挥作用。