Suppr超能文献

用于加强加密货币自动投资组合管理的网络模型。

Network Models to Enhance Automated Cryptocurrency Portfolio Management.

作者信息

Giudici Paolo, Pagnottoni Paolo, Polinesi Gloria

机构信息

Department of Economics and Management, University of Pavia, Pavia, Italy.

Department of Economics and Social Sciences, Universitá Politecnica delle Marche, Ancona, Italy.

出版信息

Front Artif Intell. 2020 Apr 24;3:22. doi: 10.3389/frai.2020.00022. eCollection 2020.

Abstract

The usage of cryptocurrencies, together with that of financial automated consultancy, is widely spreading in the last few years. However, automated consultancy services are not yet exploiting the potentiality of this nascent market, which represents a class of innovative financial products that can be proposed by robo-advisors. For this reason, we propose a novel approach to build efficient portfolio allocation strategies involving volatile financial instruments, such as cryptocurrencies. In other words, we develop an extension of the traditional Markowitz model which combines Random Matrix Theory and network measures, in order to achieve portfolio weights enhancing portfolios' risk-return profiles. The results show that overall our model overperforms several competing alternatives, maintaining a relatively low level of risk.

摘要

近年来,加密货币的使用以及金融自动化咨询服务的使用正在广泛传播。然而,自动化咨询服务尚未挖掘这个新兴市场的潜力,该市场代表了一类可由机器人顾问提出的创新金融产品。因此,我们提出了一种新颖的方法来构建涉及波动性金融工具(如加密货币)的高效投资组合分配策略。换句话说,我们开发了传统马科维茨模型的扩展,该扩展结合了随机矩阵理论和网络度量,以实现增强投资组合风险回报特征的投资组合权重。结果表明,总体而言我们的模型优于几种竞争方案,同时保持相对较低的风险水平。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d5d/7861261/d678e5cae19d/frai-03-00022-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验