Biological and Soft Systems, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom.
Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, London W12 0BZ, United Kingdom.
Nano Lett. 2021 Apr 14;21(7):2800-2808. doi: 10.1021/acs.nanolett.0c04867. Epub 2021 Mar 18.
Cell membranes regulate the distribution of biological machinery between phase-separated lipid domains to facilitate key processes including signaling and transport, which are among the life-like functionalities that bottom-up synthetic biology aims to replicate in artificial-cellular systems. Here, we introduce a modular approach to program partitioning of amphiphilic DNA nanostructures in coexisting lipid domains. Exploiting the tendency of different hydrophobic "anchors" to enrich different phases, we modulate the lateral distribution of our devices by rationally combining hydrophobes and by changing nanostructure size and topology. We demonstrate the functionality of our strategy with a bioinspired DNA architecture, which dynamically undergoes ligand-induced reconfiguration to mediate cargo transport between domains via lateral redistribution. Our findings pave the way to next-generation biomimetic platforms for sensing, transduction, and communication in synthetic cellular systems.
细胞膜调节生物机器在相分离脂质域之间的分布,以促进关键过程,包括信号转导和运输,这些都是自下而上的合成生物学旨在在人工细胞系统中复制的类似生命的功能之一。在这里,我们引入了一种模块化方法来对在共存的脂质域中进行两亲性 DNA 纳米结构的分区编程。利用不同疏水性“锚”在不同相中富集的趋势,我们通过合理组合疏水区并改变纳米结构的大小和拓扑结构来调节我们的设备的横向分布。我们用一种受生物启发的 DNA 结构来证明我们的策略的功能,该结构通过动态地进行配体诱导的重新配置,通过横向重新分布来介导货物在域之间的运输。我们的发现为下一代仿生平台在合成细胞系统中的传感、转导和通信铺平了道路。