Department of Physics, Korea University, Seoul 02841, Republic of Korea.
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States.
Nano Lett. 2021 Apr 14;21(7):3184-3190. doi: 10.1021/acs.nanolett.1c00425. Epub 2021 Mar 18.
The development of a multifunctional device that achieves optogenetic neuromodulation and extracellular neural mapping is crucial for understanding neural circuits and treating brain disorders. Although various devices have been explored for this purpose, it is challenging to develop biocompatible optogenetic devices that can seamlessly interface with the brain. Herein, we present a tissue-like optoelectronic mesh with a compact interface that enables not only high spatial and temporal resolutions of optical stimulation but also the sampling of optically evoked neural activities. An experiment in hydrogel showed efficient light propagation through a freestanding SU-8 waveguide that was integrated with flexible mesh electronics. Additionally, an implantation of the tissue-like optoelectronic mesh in the brain of a live transgenic mouse enabled the sampling of optically evoked neural signals. Therefore, this multifunctional device can aid the chronic modulation of neural circuits and behavior studies for developing biological and therapeutic applications.
开发一种能够实现光遗传学神经调节和细胞外神经映射的多功能设备对于理解神经回路和治疗脑部疾病至关重要。尽管已经探索了各种设备,但开发与大脑无缝接口的生物相容的光遗传学设备仍然具有挑战性。在这里,我们提出了一种具有紧凑接口的类似组织的光电网,不仅能够实现高空间和时间分辨率的光学刺激,还能够对光诱发的神经活动进行采样。在水凝胶中的实验表明,通过与柔性网电子产品集成的独立 SU-8 波导可以有效地传播光。此外,将类似组织的光电网植入活体转基因小鼠的大脑中,可以实现对光诱发的神经信号的采样。因此,这种多功能设备可以辅助神经回路的慢性调节以及生物和治疗应用的行为研究。