Suppr超能文献

有效图揭示了生化调节和信号转导中的冗余、信道化和控制途径。

The effective graph reveals redundancy, canalization, and control pathways in biochemical regulation and signaling.

机构信息

Network Science Institute, Northeastern University, Boston, MA 02115;

Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal.

出版信息

Proc Natl Acad Sci U S A. 2021 Mar 23;118(12). doi: 10.1073/pnas.2022598118.

Abstract

The ability to map causal interactions underlying genetic control and cellular signaling has led to increasingly accurate models of the complex biochemical networks that regulate cellular function. These network models provide deep insights into the organization, dynamics, and function of biochemical systems: for example, by revealing genetic control pathways involved in disease. However, the traditional representation of biochemical networks as binary interaction graphs fails to accurately represent an important dynamical feature of these multivariate systems: some pathways propagate control signals much more effectively than do others. Such heterogeneity of interactions reflects canalization-the system is robust to dynamical interventions in redundant pathways but responsive to interventions in effective pathways. Here, we introduce the effective graph, a weighted graph that captures the nonlinear logical redundancy present in biochemical network regulation, signaling, and control. Using 78 experimentally validated models derived from systems biology, we demonstrate that 1) redundant pathways are prevalent in biological models of biochemical regulation, 2) the effective graph provides a probabilistic but precise characterization of multivariate dynamics in a causal graph form, and 3) the effective graph provides an accurate explanation of how dynamical perturbation and control signals, such as those induced by cancer drug therapies, propagate in biochemical pathways. Overall, our results indicate that the effective graph provides an enriched description of the structure and dynamics of networked multivariate causal interactions. We demonstrate that it improves explainability, prediction, and control of complex dynamical systems in general and biochemical regulation in particular.

摘要

对遗传控制和细胞信号背后因果关系的研究能力,使我们能够越来越精确地构建调节细胞功能的复杂生化网络模型。这些网络模型深入揭示了生化系统的组织、动态和功能:例如,揭示了与疾病相关的遗传控制途径。然而,将生化网络表示为二进制交互图的传统方法,无法准确表示这些多变量系统的一个重要动态特征:一些途径比其他途径更有效地传播控制信号。这种相互作用的异质性反映了一种现象,即系统对冗余途径中的动态干预具有稳健性,但对有效途径中的干预具有响应性。在这里,我们引入有效图,这是一种加权图,可以捕捉生化网络调节、信号和控制中存在的非线性逻辑冗余。使用来自系统生物学的 78 个经过实验验证的模型,我们证明了:1)冗余途径在生化调节的生物模型中很常见;2)有效图以因果图的形式提供了对多变量动态的概率但精确的描述;3)有效图准确解释了动态干扰和控制信号(如癌症药物治疗诱导的信号)如何在生化途径中传播。总的来说,我们的结果表明,有效图提供了对网络多变量因果关系的结构和动态的丰富描述。我们证明,它提高了复杂动态系统,特别是生化调节的可解释性、预测和控制。

相似文献

3
Effective connectivity determines the critical dynamics of biochemical networks.有效连接决定了生化网络的关键动力学。
J R Soc Interface. 2022 Jan;19(186):20210659. doi: 10.1098/rsif.2021.0659. Epub 2022 Jan 19.
8
Regulatory patterns in molecular interaction networks.分子相互作用网络中的调控模式。
J Theor Biol. 2011 Nov 7;288:66-72. doi: 10.1016/j.jtbi.2011.08.015. Epub 2011 Aug 24.
10
Boolean network models of cellular regulation: prospects and limitations.细胞调控的布尔网络模型:前景与局限
J R Soc Interface. 2008 Aug 6;5 Suppl 1(Suppl 1):S85-94. doi: 10.1098/rsif.2008.0132.focus.

引用本文的文献

7
Control of Cellular Differentiation Trajectories for Cancer Reversion.癌症逆转中细胞分化轨迹的控制
Adv Sci (Weinh). 2025 Jan;12(3):e2402132. doi: 10.1002/advs.202402132. Epub 2024 Dec 11.

本文引用的文献

1
Effective connectivity determines the critical dynamics of biochemical networks.有效连接决定了生化网络的关键动力学。
J R Soc Interface. 2022 Jan;19(186):20210659. doi: 10.1098/rsif.2021.0659. Epub 2022 Jan 19.
4
Predicting perturbation patterns from the topology of biological networks.从生物网络的拓扑结构预测扰动模式。
Proc Natl Acad Sci U S A. 2018 Jul 3;115(27):E6375-E6383. doi: 10.1073/pnas.1720589115. Epub 2018 Jun 20.
9
Structure-based control of complex networks with nonlinear dynamics.基于结构的非线性动力学复杂网络控制。
Proc Natl Acad Sci U S A. 2017 Jul 11;114(28):7234-7239. doi: 10.1073/pnas.1617387114. Epub 2017 Jun 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验