Suppr超能文献

一个未解决的问题:为什么在异步布尔网络中,基序规避吸引子如此罕见?

An open problem: Why are motif-avoidant attractors so rare in asynchronous Boolean networks?

作者信息

Pastva Samuel, Park Kyu Hyong, Huvar Ondřej, Rozum Jordan C, Albert Réka

机构信息

Faculty of Informatics, Masaryk University, Botanicka 68a, 60200, Brno, Czech Republic.

Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria.

出版信息

J Math Biol. 2025 Jun 12;91(1):11. doi: 10.1007/s00285-025-02235-8.

Abstract

Asynchronous Boolean networks are a type of discrete dynamical system in which each variable can take one of two states, and a single variable state is updated in each time step according to pre-selected rules. Boolean networks are popular in systems biology due to their ability to model long-term biological phenotypes within a qualitative, predictive framework. Boolean networks model phenotypes as attractors, which are closely linked to minimal trap spaces (inescapable hypercubes in the system's state space). In biological applications, attractors and minimal trap spaces are typically in one-to-one correspondence. However, this correspondence is not guaranteed: motif-avoidant attractors (MAAs) that lie outside minimal trap spaces are possible. MAAs are rare and poorly understood, despite recent efforts. In this contribution to the BMB & JMB Special Collection "Problems, Progress and Perspectives in Mathematical and Computational Biology", we summarize the current state of knowledge regarding MAAs and present several novel observations regarding their response to node deletion reductions and linear extensions of edges. We conduct large-scale computational studies on an ensemble of 14 000 models derived from published Boolean models of biological systems, and more than 100 million Random Boolean Networks. Our findings quantify the rarity of MAAs; in particular, we only observed MAAs in biological models after applying standard simplification methods, highlighting the role of network reduction in introducing MAAs into the dynamics. We also show that MAAs are fragile to linear extensions: in sparse networks, even a single linear node can disrupt virtually all MAAs. Motivated by this observation, we improve the upper bound on the number of delays needed to disrupt a motif-avoidant attractor.

摘要

异步布尔网络是一种离散动力系统,其中每个变量可以取两种状态之一,并且在每个时间步中,单个变量状态根据预先选择的规则进行更新。布尔网络在系统生物学中很受欢迎,因为它们能够在定性、预测框架内对长期生物学表型进行建模。布尔网络将表型建模为吸引子,这与最小陷阱空间(系统状态空间中不可逃逸的超立方体)密切相关。在生物学应用中,吸引子和最小陷阱空间通常一一对应。然而,这种对应关系并不一定成立:位于最小陷阱空间之外的基序回避吸引子(MAA)是可能存在的。尽管最近有相关研究,但MAA仍然很罕见且了解甚少。在这篇为《生物化学与分子生物学通报》和《分子生物学杂志》特别专辑“数学与计算生物学中的问题、进展与展望”撰写的文章中,我们总结了关于MAA的当前知识状态,并提出了一些关于它们对节点删除减少和边的线性扩展的响应的新观察结果。我们对从已发表的生物系统布尔模型派生的14000个模型以及超过1亿个随机布尔网络进行了大规模计算研究。我们的研究结果量化了MAA的稀有性;特别是,我们仅在应用标准简化方法后在生物模型中观察到MAA,突出了网络简化在将MAA引入动力学中的作用。我们还表明,MAA对线性扩展很脆弱:在稀疏网络中,即使单个线性节点也几乎可以破坏所有MAA。基于这一观察结果,我们改进了破坏基序回避吸引子所需延迟数量的上限。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a2a/12162798/a897960e7bd6/285_2025_2235_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验