Suppr超能文献

基于生存时间过程的复发性事件的功能建模。

Functional modeling of recurrent events on time-to-event processes.

机构信息

MOX - Laboratory for Modeling and Scientific Computing, Department of Mathematics, Politecnico di Milano, Milan, Italy.

CHRP - National Center for Healthcare Research and Pharmacoepidemiology, University of Milano-Bicocca, Milan, Italy.

出版信息

Biom J. 2021 Jun;63(5):948-967. doi: 10.1002/bimj.202000374. Epub 2021 Mar 19.

Abstract

In clinical practice, it is often the case where the association between the occurrence of events and time-to-event outcomes is of interest; thus, it can be modeled within the framework of recurrent events. The purpose of our study is to enrich the information available for modeling survival with relevant dynamic features, properly taking into account their possibly time-varying nature, as well as to provide a new setting for quantifying the association between time-varying processes and time-to-event outcomes. We propose an innovative methodology to model information carried out by time-varying processes by means of functional data, modeling each time-varying variable as the compensator of marked point process the recurrent events are supposed to derive from. By means of Functional Principal Component Analysis, a suitable dimensional reduction of these objects is carried out in order to plug them into a Cox-type functional regression model for overall survival. We applied our methodology to data retrieved from the administrative databases of Lombardy Region (Italy), related to patients hospitalized for Heart Failure (HF) between 2000 and 2012. We focused on time-varying processes of HF hospitalizations and multiple drugs consumption and we studied how they influence patients' overall survival. This novel way to account for time-varying variables allowed to model self-exciting behaviors, for which the occurrence of events in the past increases the probability of a new event, and to quantify the effect of personal behaviors and therapeutic patterns on survival, giving new insights into the direction of personalized treatment.

摘要

在临床实践中,事件发生与生存时间结果之间的关联通常是人们关注的重点;因此,这可以在复发事件的框架内进行建模。我们的研究目的是通过相关的动态特征丰富生存模型的信息,适当地考虑其可能的时变性质,并为量化时变过程与生存时间结果之间的关联提供一个新的设置。我们提出了一种创新的方法,通过功能数据来对时变过程所携带的信息进行建模,将每个时变变量建模为标记点过程的补偿器,而复发事件则被认为是由该标记点过程产生的。通过功能主成分分析,对这些对象进行适当的降维处理,以便将它们插入到用于整体生存的 Cox 型功能回归模型中。我们将我们的方法应用于从意大利伦巴第地区(Lombardy Region)的行政数据库中检索到的数据,这些数据与 2000 年至 2012 年间因心力衰竭(HF)住院的患者有关。我们关注 HF 住院和多种药物消耗的时变过程,并研究它们如何影响患者的整体生存。这种考虑时变变量的新方法允许对自激发行为进行建模,其中过去事件的发生会增加新事件的概率,并量化个人行为和治疗模式对生存的影响,为个性化治疗提供新的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验