School of Medicine and Dentistry, Menzies Health Institute Queensland, Griffith University, Nathan, QLD 4111, Australia.
School of Mathematics and Statistics, University of Melbourne, Parkville, VIC 3010, Australia.
Biostatistics. 2022 Dec 12;24(1):108-123. doi: 10.1093/biostatistics/kxab037.
Multimorbidity constitutes a serious challenge on the healthcare systems in the world, due to its association with poorer health-related outcomes, more complex clinical management, increases in health service utilization and costs, but a decrease in productivity. However, to date, most evidence on multimorbidity is derived from cross-sectional studies that have limited capacity to understand the pathway of multimorbid conditions. In this article, we present an innovative perspective on analyzing longitudinal data within a statistical framework of survival analysis of time-to-event recurrent data. The proposed methodology is based on a joint frailty modeling approach with multivariate random effects to account for the heterogeneous risk of failure and the presence of informative censoring due to a terminal event. We develop a generalized linear mixed model method for the efficient estimation of parameters. We demonstrate the capacity of our approach using a real cancer registry data set on the multimorbidity of melanoma patients and document the relative performance of the proposed joint frailty model to the natural competitor of a standard frailty model via extensive simulation studies. Our new approach is timely to advance evidence-based knowledge to address increasingly complex needs related to multimorbidity and develop interventions that are most effective and viable to better help a large number of individuals with multiple conditions.
多种疾病并存给世界上的医疗保健系统带来了严重的挑战,因为它与较差的健康相关结果、更复杂的临床管理、卫生服务利用和成本的增加以及生产力的下降有关。然而,迄今为止,大多数关于多种疾病并存的证据来自横断面研究,这些研究对多种疾病并存的发病机制的理解能力有限。在本文中,我们提出了一种新颖的观点,即在生存分析的统计框架内分析纵向数据,时间到事件复发数据的生存分析。所提出的方法基于联合脆弱性建模方法,具有多元随机效应,以考虑失败的异质性风险和由于终端事件导致的信息性删失的存在。我们开发了一种广义线性混合模型方法,用于有效估计参数。我们使用黑色素瘤患者多种疾病并存的真实癌症登记数据集来证明我们方法的能力,并通过广泛的模拟研究记录所提出的联合脆弱性模型相对于标准脆弱性模型的自然竞争者的相对性能。我们的新方法及时推进循证知识,以满足与多种疾病并存相关的日益复杂的需求,并开发最有效和可行的干预措施,以更好地帮助大量患有多种疾病的个体。