Lemmerman Luke R, Balch Maria H H, Moore Jordan T, Alzate-Correa Diego, Rincon-Benavides Maria A, Salazar-Puerta Ana, Gnyawali Surya, Harris Hallie N, Lawrence William, Ortega-Pineda Lilibeth, Wilch Lauren, Risser Ian B, Maxwell Aidan J, Duarte-Sanmiguel Silvia, Dodd Daniel, Guio-Vega Gina P, McTigue Dana M, Arnold W David, Nimjee Shahid M, Sen Chandan K, Khanna Savita, Rink Cameron, Higuita-Castro Natalia, Gallego-Perez Daniel
Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA.
Department of Neurosurgery, The Ohio State University, Columbus, OH 43210, USA.
Sci Adv. 2021 Mar 19;7(12). doi: 10.1126/sciadv.abd4735. Print 2021 Mar.
Ischemic stroke causes vascular and neuronal tissue deficiencies that could lead to substantial functional impairment and/or death. Although progenitor-based vasculogenic cell therapies have shown promise as a potential rescue strategy following ischemic stroke, current approaches face major hurdles. Here, we used fibroblasts nanotransfected with , , and () to drive reprogramming-based vasculogenesis, intracranially, as a potential therapy for ischemic stroke. Perfusion analyses suggest that intracranial delivery of -nanotransfected fibroblasts led to a dose-dependent increase in perfusion 14 days after injection. MRI and behavioral tests revealed ~70% infarct resolution and up to ~90% motor recovery for mice treated with -nanotransfected fibroblasts. Immunohistological analysis confirmed increases in vascularity and neuronal cellularity, as well as reduced glial scar formation in response to treatment with -nanotransfected fibroblasts. Together, our results suggest that vasculogenic cell therapies based on nanotransfection-driven (i.e., nonviral) cellular reprogramming represent a promising strategy for the treatment of ischemic stroke.
缺血性中风会导致血管和神经组织缺损,进而可能导致严重的功能障碍和/或死亡。尽管基于祖细胞的血管生成细胞疗法已显示出作为缺血性中风后潜在挽救策略的前景,但目前的方法面临重大障碍。在此,我们使用经、和()纳米转染的成纤维细胞,在颅内驱动基于重编程的血管生成,作为缺血性中风的一种潜在治疗方法。灌注分析表明,注射后14天,纳米转染成纤维细胞的颅内递送导致灌注呈剂量依赖性增加。MRI和行为测试显示,接受纳米转染成纤维细胞治疗的小鼠梗死灶分辨率约为70%,运动恢复率高达约90%。免疫组织学分析证实,纳米转染成纤维细胞治疗后血管生成和神经细胞数量增加,胶质瘢痕形成减少。总之,我们的结果表明,基于纳米转染驱动(即非病毒)细胞重编程的血管生成细胞疗法是治疗缺血性中风的一种有前景的策略。