Centre for Bionano Interactions, University College Dublin, Dublin, Ireland.
Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden.
Sci Rep. 2021 Mar 19;11(1):6443. doi: 10.1038/s41598-021-84029-8.
Advances in nanofabrication methods have enabled the tailoring of new strategies towards the controlled production of nanoparticles with attractive applications in healthcare. In many cases, their characterisation remains a big challenge, particularly for small-sized functional nanoparticles of 5 nm diameter or smaller, where current particle sizing techniques struggle to provide the required sensitivity and accuracy. There is a clear need for the development of new reliable characterisation approaches for the physico-chemical characterisation of nanoparticles with significant accuracy, particularly for the analysis of the particles in the presence of complex biological fluids. Herein, we show that the Differential Centrifugal Sedimentation can be utilised as a high-precision tool for the reliable characterisation of functional nanoparticles of different materials. We report a method to correlate the sedimentation shift with the polymer and biomolecule adsorption on the nanoparticle surface, validating the developed core-shell model. We also highlight its limit when measuring nanoparticles of smaller size and the need to use several complementary methods when characterising nanoparticle corona complexes.
纳米制造方法的进步使人们能够制定新的策略,以控制具有吸引力的医疗保健应用的纳米粒子的生产。在许多情况下,它们的特性仍然是一个巨大的挑战,特别是对于直径为 5nm 或更小的小型功能纳米粒子,目前的颗粒尺寸技术难以提供所需的灵敏度和准确性。显然需要开发新的可靠的纳米粒子物理化学特性的表征方法,以实现显著的准确性,特别是在复杂的生物流体存在下分析颗粒时。在这里,我们表明差速离心沉降可作为一种高精度工具,用于对不同材料的功能纳米粒子进行可靠的表征。我们报告了一种方法,可将沉降位移与聚合物和生物分子在纳米粒子表面上的吸附相关联,从而验证了所开发的核壳模型。我们还强调了在测量较小尺寸的纳米粒子时该方法的局限性,以及在表征纳米粒子冠复合物时需要使用几种互补方法。