Samadi Morasae, Sarikhani Navid, Zirak Mohammad, Zhang Hua, Zhang Hao-Li, Moshfegh Alireza Z
Department of Physics, Sharif University of Technology, Tehran 11155-9161, Iran.
Nanoscale Horiz. 2018 Mar 1;3(2):90-204. doi: 10.1039/c7nh00137a. Epub 2018 Jan 4.
Group 6 transition metal dichalcogenides (G6-TMDs), most notably MoS, MoSe, MoTe, WS and WSe, constitute an important class of materials with a layered crystal structure. Various types of G6-TMD nanomaterials, such as nanosheets, nanotubes and quantum dot nano-objects and flower-like nanostructures, have been synthesized. High thermodynamic stability under ambient conditions, even in atomically thin form, made nanosheets of these inorganic semiconductors a valuable asset in the existing library of two-dimensional (2D) materials, along with the well-known semimetallic graphene and insulating hexagonal boron nitride. G6-TMDs generally possess an appropriate bandgap (1-2 eV) which is tunable by size and dimensionality and changes from indirect to direct in monolayer nanosheets, intriguing for (opto)electronic, sensing, and solar energy harvesting applications. Moreover, rich intercalation chemistry and abundance of catalytically active edge sites make them promising for fabrication of novel energy storage devices and advanced catalysts. In this review, we provide an overview on all aspects of the basic science, physicochemical properties and characterization techniques as well as all existing production methods and applications of G6-TMD nanomaterials in a comprehensive yet concise treatment. Particular emphasis is placed on establishing a linkage between the features of production methods and the specific needs of rapidly growing applications of G6-TMDs to develop a production-application selection guide. Based on this selection guide, a framework is suggested for future research on how to bridge existing knowledge gaps and improve current production methods towards technological application of G6-TMD nanomaterials.
第6族过渡金属二硫属化物(G6-TMDs),最典型的是MoS、MoSe、MoTe、WS和WSe,是一类具有层状晶体结构的重要材料。已经合成了各种类型的G6-TMD纳米材料,如纳米片、纳米管、量子点纳米物体和花状纳米结构。这些无机半导体的纳米片在环境条件下具有很高的热力学稳定性,即使是原子级薄的形式,这使得它们与著名的半金属石墨烯和绝缘六方氮化硼一样,成为现有二维(2D)材料库中的宝贵资产。G6-TMDs通常具有合适的带隙(1-2 eV),该带隙可通过尺寸和维度进行调节,并且在单层纳米片中从间接带隙变为直接带隙,这对于(光)电子、传感和太阳能收集应用来说很有吸引力。此外,丰富的插层化学性质和大量催化活性边缘位点使它们有望用于制造新型储能装置和先进催化剂。在这篇综述中,我们全面而简洁地概述了G6-TMD纳米材料的基础科学、物理化学性质、表征技术以及所有现有的生产方法和应用的各个方面。特别强调建立生产方法的特点与G6-TMDs快速增长的应用的特定需求之间的联系,以制定生产-应用选择指南。基于此选择指南,提出了一个框架,用于未来关于如何弥合现有知识差距以及改进当前生产方法以实现G6-TMD纳米材料技术应用的研究。