Suppr超能文献

基于卷积神经网络的独立头颈部肿瘤队列远处转移时间事件分析。

Distant metastasis time to event analysis with CNNs in independent head and neck cancer cohorts.

机构信息

Department of Radiation Oncology, University Hospital, LMU Munich, Munich, 81377, Germany.

Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Garching, 85748, Germany.

出版信息

Sci Rep. 2021 Mar 19;11(1):6418. doi: 10.1038/s41598-021-85671-y.

Abstract

Deep learning models based on medical images play an increasingly important role for cancer outcome prediction. The standard approach involves usage of convolutional neural networks (CNNs) to automatically extract relevant features from the patient's image and perform a binary classification of the occurrence of a given clinical endpoint. In this work, a 2D-CNN and a 3D-CNN for the binary classification of distant metastasis (DM) occurrence in head and neck cancer patients were extended to perform time-to-event analysis. The newly built CNNs incorporate censoring information and output DM-free probability curves as a function of time for every patient. In total, 1037 patients were used to build and assess the performance of the time-to-event model. Training and validation was based on 294 patients also used in a previous benchmark classification study while for testing 743 patients from three independent cohorts were used. The best network could reproduce the good results from 3-fold cross validation [Harrell's concordance indices (HCIs) of 0.78, 0.74 and 0.80] in two out of three testing cohorts (HCIs of 0.88, 0.67 and 0.77). Additionally, the capability of the models for patient stratification into high and low-risk groups was investigated, the CNNs being able to significantly stratify all three testing cohorts. Results suggest that image-based deep learning models show good reliability for DM time-to-event analysis and could be used for treatment personalisation.

摘要

基于医学图像的深度学习模型在癌症预后预测中发挥着越来越重要的作用。标准方法涉及使用卷积神经网络(CNN)自动从患者图像中提取相关特征,并对给定临床终点的发生进行二进制分类。在这项工作中,我们扩展了用于头颈部癌症患者远处转移(DM)发生的二分类的 2D-CNN 和 3D-CNN,以进行时事件分析。新构建的 CNN 纳入了删失信息,并为每个患者的时间输出 DM 无概率曲线。总共使用了 1037 名患者来构建和评估时事件模型的性能。训练和验证基于也用于以前的基准分类研究的 294 名患者,而对于测试,使用了来自三个独立队列的 743 名患者。最佳网络可以在两个测试队列中的两个队列(HCIs 为 0.88、0.67 和 0.77)中重现 3 倍交叉验证的良好结果[Harrell 的一致性指数(HCIs)为 0.78、0.74 和 0.80]。此外,还研究了模型对高风险和低风险患者分层的能力,CNN 能够显著分层所有三个测试队列。结果表明,基于图像的深度学习模型在 DM 时事件分析中具有良好的可靠性,可用于治疗个体化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db3e/7979766/59eecf49cf42/41598_2021_85671_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验