Suppr超能文献

基于机器学习的帕金森病患者深部脑刺激筛查中认知障碍的自动脑电图生物标志物。

Machine learning for automated EEG-based biomarkers of cognitive impairment during Deep Brain Stimulation screening in patients with Parkinson's Disease.

机构信息

Leiden University Medical Centre, Department of Neurology, the Netherlands; Leiden University Medical Centre, Department of Epidemiology, the Netherlands.

Leiden Institute of Advanced Computer Science, the Netherlands.

出版信息

Clin Neurophysiol. 2021 May;132(5):1041-1048. doi: 10.1016/j.clinph.2021.01.021. Epub 2021 Feb 24.

Abstract

OBJECTIVE

A downside of Deep Brain Stimulation (DBS) for Parkinson's Disease (PD) is that cognitive function may deteriorate postoperatively. Electroencephalography (EEG) was explored as biomarker of cognition using a Machine Learning (ML) pipeline.

METHODS

A fully automated ML pipeline was applied to 112 PD patients, taking EEG time-series as input and predicted class-labels as output. The most extreme cognitive scores were selected for class differentiation, i.e. best vs. worst cognitive performance (n = 20 per group). 16,674 features were extracted per patient; feature-selection was performed using a Boruta algorithm. A random forest classifier was modelled; 10-fold cross-validation with Bayesian optimization was performed to ensure generalizability. The predicted class-probabilities of the entire cohort were compared to actual cognitive performance.

RESULTS

Both groups were differentiated with a mean accuracy of 0.92; using only occipital peak frequency yielded an accuracy of 0.67. Class-probabilities and actual cognitive performance were negatively linearly correlated (β = -0.23 (95% confidence interval (-0.29, -0.18))).

CONCLUSIONS

Particularly high accuracies were achieved using a compound of automatically extracted EEG biomarkers to classify PD patients according to cognition, rather than a single spectral EEG feature.

SIGNIFICANCE

Automated EEG assessment may have utility for cognitive profiling of PD patients during the DBS screening.

摘要

目的

深部脑刺激(DBS)治疗帕金森病(PD)的一个缺点是术后认知功能可能会恶化。本研究使用机器学习(ML)管道探索脑电图(EEG)作为认知的生物标志物。

方法

将一个完全自动化的 ML 管道应用于 112 名 PD 患者,将 EEG 时间序列作为输入,并预测类别标签作为输出。选择最极端的认知评分进行分类,即最佳与最差认知表现(每组 20 名)。每位患者提取 16674 个特征;使用 Boruta 算法进行特征选择。构建随机森林分类器;采用 10 折交叉验证和贝叶斯优化来确保泛化能力。将整个队列的预测类别概率与实际认知表现进行比较。

结果

两组均能准确区分,平均准确率为 0.92;仅使用枕部峰频率的准确率为 0.67。类别概率与实际认知表现呈负线性相关(β=-0.23(95%置信区间[-0.29,-0.18]))。

结论

使用自动提取的 EEG 生物标志物组合来根据认知对 PD 患者进行分类,可以达到很高的准确率,而不是单个频谱 EEG 特征。

意义

自动 EEG 评估可能对 DBS 筛选期间 PD 患者的认知特征分析具有实用价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验