乳腺癌放射组学:基于 MRI 放射组学模型预测 Ki-67 表达。

Radioproteomics in Breast Cancer: Prediction of Ki-67 Expression With MRI-based Radiomic Models.

机构信息

Istanbul Universitesi- Cerrahpasa Medical Faculty, Department of Radiology, Kocamustafapasa, Istanbul, Turkey.

Basaksehir Cam and Sakura City Hospital, Basaksehir, Istanbul, Turkey.

出版信息

Acad Radiol. 2022 Jan;29 Suppl 1:S116-S125. doi: 10.1016/j.acra.2021.02.001. Epub 2021 Mar 18.

Abstract

RATIONALE AND OBJECTIVES

We aimed to investigate the value of magnetic resonance image (MRI)-based radiomics in predicting Ki-67 expression of breast cancer.

METHODS

In this retrospective study, 159 lesions from 154 patients were included. Radiomic features were extracted from contrast-enhanced T1-weighted MRI (C+MRI) and apparent diffusion coefficient (ADC) maps, with open-source software. Dimension reduction was done with reliability analysis, collinearity analysis, and feature selection. Two different Ki-67 expression cut-off values (14% vs 20%) were studied as reference standard for the classifications. Input for the models were radiomic features from individual MRI sequences or their combination. Classifications were performed using a generalized linear model.

RESULTS

Considering Ki-67 cut-off value of 14%, training and testing AUC values were 0.785 (standard deviation [SD], 0.193) and 0.849 for ADC; 0.696 (SD, 0.150) and 0.695 for C+MRI; 0.755 (SD, 0.171) and 0.635 for the combination of both sequences, respectively. Regarding Ki-67 cut-off value of 20%, training and testing AUC values were 0.744 (SD, 0.197) and 0.617 for ADC; 0.629 (SD, 0.251) and 0.741 for C+MRI; 0.761 (SD, 0.207) and 0.618 for the combination of both sequences, respectively.

CONCLUSION

ADC map-based selected radiomic features coupled with generalized linear modeling might be a promising non-invasive method to determine the Ki-67 expression level of breast cancer.

摘要

背景与目的

本研究旨在探讨磁共振成像(MRI)放射组学在预测乳腺癌 Ki-67 表达中的价值。

方法

本回顾性研究纳入了 154 例患者的 159 个病灶。使用开源软件从对比增强 T1 加权 MRI(C+MRI)和表观扩散系数(ADC)图中提取放射组学特征。采用可靠性分析、共线性分析和特征选择进行降维处理。以 Ki-67 表达的两个不同截断值(14%比 20%)作为分类的参考标准。模型的输入是来自单个 MRI 序列或其组合的放射组学特征。使用广义线性模型进行分类。

结果

以 Ki-67 截断值为 14%时,ADC 的训练和测试 AUC 值分别为 0.785(标准差 [SD],0.193)和 0.849;C+MRI 的训练和测试 AUC 值分别为 0.696(SD,0.150)和 0.695;两种序列组合的训练和测试 AUC 值分别为 0.755(SD,0.171)和 0.635。以 Ki-67 截断值为 20%时,ADC 的训练和测试 AUC 值分别为 0.744(SD,0.197)和 0.617;C+MRI 的训练和测试 AUC 值分别为 0.629(SD,0.251)和 0.741;两种序列组合的训练和测试 AUC 值分别为 0.761(SD,0.207)和 0.618。

结论

基于 ADC 图的选定放射组学特征结合广义线性模型可能是一种很有前途的非侵入性方法,可用于确定乳腺癌的 Ki-67 表达水平。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索