Suppr超能文献

MRI 乳腺癌放射组学:基于机器学习的淋巴管侵犯状态预测。

MRI Radiomics of Breast Cancer: Machine Learning-Based Prediction of Lymphovascular Invasion Status.

机构信息

Department of Radiology, Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Kocamustafapasa, Istanbul, Turkey.

Department of Radiology, Basaksehir Cam and Sakura City Hospital, Basaksehir, Istanbul, Turkey.

出版信息

Acad Radiol. 2022 Jan;29 Suppl 1:S126-S134. doi: 10.1016/j.acra.2021.10.026. Epub 2021 Dec 4.

Abstract

RATIONALE AND OBJECTIVES

In patients with breast cancer (BC), lymphovascular invasion (LVI) status is considered an important prognostic factor. We aimed to develop machine learning (ML)-based radiomics models for the prediction of LVI status in patients with BC, using preoperative MRI images.

MATERIALS AND METHODS

This retrospective study included patients with BC with known LVI status and preoperative MRI. The dataset was split into training and unseen testing sets by stratified sampling with a 2:1 ratio. 2D and 3D radiomic features were extracted from contrast-enhanced T1 weighted images (C+T1W) and apparent diffusion coefficient (ADC) maps. The reliability of the features was assessed with two radiologists' segmentation data. Dimension reduction was done with reliability analysis, multi-collinearity analysis, removal of low-variance features, and feature selection. ML models were created with base, tuned, and boosted random forest algorithms.

RESULT

A total of 128 lesions (LVI-positive, 76; LVI-negative, 52) were included. The best model performance was achieved with tunning and boosting model based on 3D ADC maps and selected four radiomic features. The area under the curve and accuracy were 0.726 and 63.5% in the training data, 0.732 and 76.7% in the test data, respectively. The overall sensitivity and positive predictive values were 68% and 69.6% in the training data, 84.6% and 78.6% in the test data, respectively.

CONCLUSION

ML and radiomics based on 3D segmentation of ADC maps can be used to predict LVI status in BC, with satisfying performance.

摘要

背景与目的

在乳腺癌(BC)患者中,淋巴血管侵犯(LVI)状态被认为是一个重要的预后因素。我们旨在使用术前 MRI 图像,为 BC 患者开发基于机器学习(ML)的放射组学模型来预测 LVI 状态。

材料与方法

这项回顾性研究纳入了已知 LVI 状态和术前 MRI 的 BC 患者。数据集通过分层抽样以 2:1 的比例分为训练集和未见过的测试集。从对比增强 T1 加权图像(C+T1W)和表观扩散系数(ADC)图中提取二维和三维放射组学特征。两位放射科医生的分割数据评估了特征的可靠性。通过可靠性分析、多重共线性分析、去除低方差特征和特征选择进行降维。使用基础、调优和提升随机森林算法创建 ML 模型。

结果

共纳入 128 个病灶(LVI 阳性,76 个;LVI 阴性,52 个)。基于 3D ADC 图和选择的四个放射组学特征,调优和提升模型的性能最佳。在训练数据中,曲线下面积和准确性分别为 0.726 和 63.5%,在测试数据中分别为 0.732 和 76.7%。在训练数据中,总体敏感性和阳性预测值分别为 68%和 69.6%,在测试数据中分别为 84.6%和 78.6%。

结论

基于 ADC 图 3D 分割的 ML 和放射组学可用于预测 BC 的 LVI 状态,性能令人满意。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验