Discipline of Medical Imaging Science, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.
J Med Radiat Sci. 2023 Dec;70(4):462-478. doi: 10.1002/jmrs.709. Epub 2023 Aug 3.
Radiomics is an emerging field that aims to extract and analyse a comprehensive set of quantitative features from medical images. This scoping review is focused on MRI-based radiomic features for the molecular profiling of breast tumours and the implications of this work for predicting patient outcomes. A thorough systematic literature search and outcome extraction were performed to identify relevant studies published in MEDLINE/PubMed (National Centre for Biotechnology Information), EMBASE and Scopus from 2015 onwards. The following information was retrieved from each article: study purpose, study design, extracted radiomic features, machine learning technique(s), sample size/characteristics, statistical result(s) and implications on patient outcomes. Based on the study purpose, four key themes were identified in the included 63 studies: tumour subtype classification (n = 35), pathologically complete response (pCR) prediction (n = 15), lymph node metastasis (LNM) detection (n = 7) and recurrence rate prediction (n = 6). In all four themes, reported accuracies widely varied among the studies, for example, area under receiver characteristics curve (AUC) for detecting LNM ranged from 0.72 to 0.91 and the AUC for predicting pCR ranged from 0.71 to 0.99. In all four themes, combining radiomic features with clinical data improved the predictive models. Preliminary results of this study showed radiomics potential to characterise the whole tumour heterogeneity, with clear implications for individual-targeted treatment. However, radiomics is still in the pre-clinical phase, currently with an insufficient number of large multicentre studies and those existing studies are often limited by insufficient methodological transparency and standardised workflow. Consequently, the clinical translation of existing studies is currently limited.
放射组学是一个新兴领域,旨在从医学图像中提取和分析一组全面的定量特征。本范围综述专注于基于 MRI 的放射组学特征,用于乳腺癌的分子分析以及这项工作对预测患者结局的影响。通过全面的系统文献检索和结果提取,从 2015 年起在 MEDLINE/PubMed(美国国家生物技术信息中心)、EMBASE 和 Scopus 中确定了相关研究。从每篇文章中检索到以下信息:研究目的、研究设计、提取的放射组学特征、机器学习技术、样本大小/特征、统计结果以及对患者结局的影响。根据研究目的,在纳入的 63 项研究中确定了四个关键主题:肿瘤亚型分类(n=35)、病理完全缓解(pCR)预测(n=15)、淋巴结转移(LNM)检测(n=7)和复发率预测(n=6)。在所有四个主题中,报道的准确性在研究之间差异很大,例如,检测 LNM 的接收器特征曲线下面积(AUC)范围为 0.72 至 0.91,预测 pCR 的 AUC 范围为 0.71 至 0.99。在所有四个主题中,将放射组学特征与临床数据相结合可提高预测模型的性能。本研究的初步结果表明,放射组学具有描绘整个肿瘤异质性的潜力,对个体化靶向治疗具有明确的意义。然而,放射组学仍处于临床前阶段,目前缺乏足够的大型多中心研究,而且现有的研究往往受到方法学透明度和标准化工作流程不足的限制。因此,现有研究的临床转化目前受到限制。