Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Waehringerguertel 18-20, 1090, Vienna, Austria.
Institute of Radiology, Erlangen University Hospital, Maximiliansplatz 2, 91054, Erlangen, Germany.
Eur Radiol. 2021 Aug;31(8):5866-5876. doi: 10.1007/s00330-021-07787-z. Epub 2021 Mar 20.
Due to its high sensitivity, DCE MRI of the breast (bMRI) is increasingly used for both screening and assessment purposes. The high number of detected lesions poses a significant logistic challenge in clinical practice. The aim was to evaluate a temporally and spatially resolved (4D) radiomics approach to distinguish benign from malignant enhancing breast lesions and thereby avoid unnecessary biopsies.
This retrospective study included consecutive patients with MRI-suspicious findings (BI-RADS 4/5). Two blinded readers analyzed DCE images using a commercially available software, automatically extracting BI-RADS curve types and pharmacokinetic enhancement features. After principal component analysis (PCA), a neural network-derived A.I. classifier to discriminate benign from malignant lesions was constructed and tested using a random split simple approach. The rate of avoidable biopsies was evaluated at exploratory cutoffs (C, 100%, and C, ≥ 95% sensitivity).
Four hundred seventy (295 malignant) lesions in 329 female patients (mean age 55.1 years, range 18-85 years) were examined. Eighty-six DCE features were extracted based on automated volumetric lesion analysis. Five independent component features were extracted using PCA. The A.I. classifier achieved a significant (p < .001) accuracy to distinguish benign from malignant lesion within the test sample (AUC: 83.5%; 95% CI: 76.8-89.0%). Applying identified cutoffs on testing data not included in training dataset showed the potential to lower the number of unnecessary biopsies of benign lesions by 14.5% (C) and 36.2% (C).
The investigated automated 4D radiomics approach resulted in an accurate A.I. classifier able to distinguish between benign and malignant lesions. Its application could have avoided unnecessary biopsies.
• Principal component analysis of the extracted volumetric and temporally resolved (4D) DCE markers favored pharmacokinetic modeling derived features. • An A.I. classifier based on 86 extracted DCE features achieved a good to excellent diagnostic performance as measured by the area under the ROC curve with 80.6% (training dataset) and 83.5% (testing dataset). • Testing the resulting A.I. classifier showed the potential to lower the number of unnecessary biopsies of benign breast lesions by up to 36.2%, p < .001 at the cost of up to 4.5% (n = 4) false negative low-risk cancers.
由于其高灵敏度,乳腺动态对比增强磁共振成像(bMRI)越来越多地用于筛查和评估目的。大量检测到的病变在临床实践中带来了重大的逻辑挑战。本研究旨在评估一种时间和空间分辨(4D)的放射组学方法,以区分良性和恶性强化乳腺病变,从而避免不必要的活检。
这是一项回顾性研究,纳入了 MRI 可疑表现(BI-RADS 4/5)的连续患者。两名盲法读者使用商业软件分析 DCE 图像,自动提取 BI-RADS 曲线类型和药代动力学增强特征。在主成分分析(PCA)后,构建了一个基于神经网络的人工智能分类器,以区分良性和恶性病变,并使用随机分割简单方法进行测试。在探索性截止值(C,100%和 C,≥95%敏感性)处评估可避免活检的比率。
在 329 名女性患者(平均年龄 55.1 岁,范围 18-85 岁)中检查了 470 个(295 个恶性)病变。基于自动容积病变分析提取了 86 个 DCE 特征。使用 PCA 提取了 5 个独立成分特征。人工智能分类器在测试样本中显著(p<.001)区分良性和恶性病变的准确性(AUC:83.5%;95%CI:76.8-89.0%)。在不包括在训练数据集中的测试数据上应用确定的截止值表明,通过应用确定的截止值,良性病变的不必要活检数量可降低 14.5%(C)和 36.2%(C)。
研究中自动 4D 放射组学方法生成的人工智能分类器能够准确区分良性和恶性病变。其应用可能避免了不必要的活检。
提取的容积和时间分辨(4D)DCE 标记物的主成分分析有利于药代动力学建模衍生特征。
基于 86 个提取的 DCE 特征的人工智能分类器在 ROC 曲线下面积方面表现出良好到极好的诊断性能,训练数据集为 80.6%,测试数据集为 83.5%。
测试所得人工智能分类器具有降低良性乳腺病变不必要活检数量的潜力,可达 36.2%,p<.001,但代价是高达 4.5%(n=4)的低风险癌症假阴性。