Suppr超能文献

基于物理约束的计算磁共振成像:在多对比度和定量成像中的应用

Computational MRI with Physics-based Constraints: Application to Multi-contrast and Quantitative Imaging.

作者信息

Tamir Jonathan I, Ong Frank, Anand Suma, Karasan Ekin, Wang Ke, Lustig Michael

机构信息

Department of Electrical Engineering and Computer Sciences, University of California.

Department of Electrical Engineering, Stanford University.

出版信息

IEEE Signal Process Mag. 2020 Jan;37(1):94-104. doi: 10.1109/msp.2019.2940062. Epub 2020 Jan 17.

Abstract

Compressed sensing takes advantage of low-dimensional signal structure to reduce sampling requirements far below the Nyquist rate. In magnetic resonance imaging (MRI), this often takes the form of sparsity through wavelet transform, finite differences, and low rank extensions. Though powerful, these image priors are phenomenological in nature and do not account for the mechanism behind the image formation. On the other hand, MRI signal dynamics are governed by physical laws, which can be explicitly modeled and used as priors for reconstruction. These explicit and implicit signal priors can be synergistically combined in an inverse problem framework to recover sharp, multi-contrast images from highly accelerated scans. Furthermore, the physics-based constraints provide a recipe for recovering quantitative, bio-physical parameters from the data. This article introduces physics-based modeling constraints in MRI and shows how they can be used in conjunction with compressed sensing for image reconstruction and quantitative imaging. We describe model-based quantitative MRI, as well as its linear subspace approximation. We also discuss approaches to selecting user-controllable scan parameters given knowledge of the physical model. We present several MRI applications that take advantage of this framework for the purpose of multi-contrast imaging and quantitative mapping.

摘要

压缩感知利用低维信号结构,将采样要求降低到远低于奈奎斯特速率。在磁共振成像(MRI)中,这通常通过小波变换、有限差分和低秩扩展等稀疏形式来实现。尽管这些方法很强大,但这些图像先验本质上是现象学的,并未考虑图像形成背后的机制。另一方面,MRI信号动力学受物理定律支配,这些物理定律可以明确建模并用作重建的先验。这些显式和隐式信号先验可以在反问题框架中协同组合,以从高度加速的扫描中恢复清晰的多对比度图像。此外,基于物理的约束为从数据中恢复定量生物物理参数提供了方法。本文介绍了MRI中基于物理的建模约束,并展示了它们如何与压缩感知结合用于图像重建和定量成像。我们描述了基于模型的定量MRI及其线性子空间近似。我们还讨论了在已知物理模型的情况下选择用户可控扫描参数的方法。我们展示了几个利用此框架进行多对比度成像和定量映射的MRI应用。

相似文献

8
Compressed sensing for body MRI.用于人体磁共振成像的压缩感知
J Magn Reson Imaging. 2017 Apr;45(4):966-987. doi: 10.1002/jmri.25547. Epub 2016 Dec 16.
9
Exploiting the wavelet structure in compressed sensing MRI.利用压缩感知磁共振成像中的小波结构。
Magn Reson Imaging. 2014 Dec;32(10):1377-89. doi: 10.1016/j.mri.2014.07.016. Epub 2014 Aug 19.

引用本文的文献

本文引用的文献

2
OEDIPUS: An Experiment Design Framework for Sparsity-Constrained MRI.OEDIPUS:用于稀疏约束 MRI 的实验设计框架。
IEEE Trans Med Imaging. 2019 Jul;38(7):1545-1558. doi: 10.1109/TMI.2019.2896180. Epub 2019 Feb 1.
3
Targeted rapid knee MRI exam using T shuffling.基于 T 扰相的靶向快速膝关节 MRI 检查。
J Magn Reson Imaging. 2019 Jun;49(7):e195-e204. doi: 10.1002/jmri.26600. Epub 2019 Jan 13.
6
MoDL: Model-Based Deep Learning Architecture for Inverse Problems.MoDL:基于模型的深度学习架构用于反问题。
IEEE Trans Med Imaging. 2019 Feb;38(2):394-405. doi: 10.1109/TMI.2018.2865356. Epub 2018 Aug 13.
9
Beyond Low Rank + Sparse: Multi-scale Low Rank Matrix Decomposition.超越低秩+稀疏:多尺度低秩矩阵分解
IEEE J Sel Top Signal Process. 2016 Jun;10(4):672-687. doi: 10.1109/JSTSP.2016.2545518. Epub 2016 Mar 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验