Suppr超能文献

人工智能在癌症磁共振成像中的批判性评估。

A critical assessment of artificial intelligence in magnetic resonance imaging of cancer.

作者信息

Wu Chengyue, Andaloussi Meryem Abbad, Hormuth David A, Lima Ernesto A B F, Lorenzo Guillermo, Stowers Casey E, Ravula Sriram, Levac Brett, Dimakis Alexandros G, Tamir Jonathan I, Brock Kristy K, Chung Caroline, Yankeelov Thomas E

机构信息

Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX USA.

Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX USA.

出版信息

Npj Imaging. 2025;3(1):15. doi: 10.1038/s44303-025-00076-0. Epub 2025 Apr 9.

Abstract

Given the enormous output and pace of development of artificial intelligence (AI) methods in medical imaging, it can be challenging to identify the true success stories to determine the state-of-the-art of the field. This report seeks to provide the magnetic resonance imaging (MRI) community with an initial guide into the major areas in which the methods of AI are contributing to MRI in oncology. After a general introduction to artificial intelligence, we proceed to discuss the successes and current limitations of AI in MRI when used for image acquisition, reconstruction, registration, and segmentation, as well as its utility for assisting in diagnostic and prognostic settings. Within each section, we attempt to present a balanced summary by first presenting common techniques, state of readiness, current clinical needs, and barriers to practical deployment in the clinical setting. We conclude by presenting areas in which new advances must be realized to address questions regarding generalizability, quality assurance and control, and uncertainty quantification when applying MRI to cancer to maintain patient safety and practical utility.

摘要

鉴于医学成像领域中人工智能(AI)方法的巨大产出和发展速度,要确定该领域的最新技术水平并找出真正成功的案例可能具有挑战性。本报告旨在为磁共振成像(MRI)领域提供一份初步指南,介绍人工智能方法在肿瘤学MRI中的主要应用领域。在对人工智能进行总体介绍之后,我们将讨论AI在用于图像采集、重建、配准和分割时,在MRI中的成功之处和当前的局限性,以及其在辅助诊断和预后评估方面的效用。在每个部分中,我们首先介绍常见技术、准备就绪状态、当前临床需求以及在临床环境中实际应用的障碍,试图呈现一个平衡全面的总结。最后,我们阐述了在将MRI应用于癌症时,为解决有关通用性、质量保证与控制以及不确定性量化等问题以确保患者安全和实际效用,必须取得新进展的领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5246/12118737/ef6f3b4d0c49/44303_2025_76_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验