文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

A critical assessment of artificial intelligence in magnetic resonance imaging of cancer.

作者信息

Wu Chengyue, Andaloussi Meryem Abbad, Hormuth David A, Lima Ernesto A B F, Lorenzo Guillermo, Stowers Casey E, Ravula Sriram, Levac Brett, Dimakis Alexandros G, Tamir Jonathan I, Brock Kristy K, Chung Caroline, Yankeelov Thomas E

机构信息

Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX USA.

Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX USA.

出版信息

Npj Imaging. 2025;3(1):15. doi: 10.1038/s44303-025-00076-0. Epub 2025 Apr 9.


DOI:10.1038/s44303-025-00076-0
PMID:40226507
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11981920/
Abstract

Given the enormous output and pace of development of artificial intelligence (AI) methods in medical imaging, it can be challenging to identify the true success stories to determine the state-of-the-art of the field. This report seeks to provide the magnetic resonance imaging (MRI) community with an initial guide into the major areas in which the methods of AI are contributing to MRI in oncology. After a general introduction to artificial intelligence, we proceed to discuss the successes and current limitations of AI in MRI when used for image acquisition, reconstruction, registration, and segmentation, as well as its utility for assisting in diagnostic and prognostic settings. Within each section, we attempt to present a balanced summary by first presenting common techniques, state of readiness, current clinical needs, and barriers to practical deployment in the clinical setting. We conclude by presenting areas in which new advances must be realized to address questions regarding generalizability, quality assurance and control, and uncertainty quantification when applying MRI to cancer to maintain patient safety and practical utility.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5246/12118737/27760a2026d3/44303_2025_76_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5246/12118737/ef6f3b4d0c49/44303_2025_76_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5246/12118737/fd185517cf66/44303_2025_76_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5246/12118737/fa16dec6e7e6/44303_2025_76_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5246/12118737/27760a2026d3/44303_2025_76_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5246/12118737/ef6f3b4d0c49/44303_2025_76_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5246/12118737/fd185517cf66/44303_2025_76_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5246/12118737/fa16dec6e7e6/44303_2025_76_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5246/12118737/27760a2026d3/44303_2025_76_Fig4_HTML.jpg

相似文献

[1]
A critical assessment of artificial intelligence in magnetic resonance imaging of cancer.

Npj Imaging. 2025

[2]
ATOMMIC: An Advanced Toolbox for Multitask Medical Imaging Consistency to facilitate Artificial Intelligence applications from acquisition to analysis in Magnetic Resonance Imaging.

Comput Methods Programs Biomed. 2024-11

[3]
The Applications of Artificial Intelligence in Cardiovascular Magnetic Resonance-A Comprehensive Review.

J Clin Med. 2022-5-19

[4]
Current State of Artificial Intelligence in Clinical Applications for Head and Neck MR Imaging.

Magn Reson Med Sci. 2023-10-1

[5]
Artificial Intelligence in Cardiac MRI: Is Clinical Adoption Forthcoming?

Front Cardiovasc Med. 2022-1-10

[6]
[Applications of Artificial Intelligence in MR Image Acquisition and Reconstruction].

J Korean Soc Radiol. 2022-11

[7]
Artificial Intelligence-Driven Ultra-Fast Superresolution MRI: 10-Fold Accelerated Musculoskeletal Turbo Spin Echo MRI Within Reach.

Invest Radiol. 2023-1-1

[8]
[Artificial intelligence in cardiovascular radiology : Image acquisition, image reconstruction and workflow optimization].

Radiologie (Heidelb). 2024-10

[9]
Artificial intelligence for breast cancer detection and its health technology assessment: A scoping review.

Comput Biol Med. 2025-1

[10]
Current status and future directions in artificial intelligence for nuclear cardiology.

Expert Rev Cardiovasc Ther. 2024-8

本文引用的文献

[1]
Exploring adult glioma through MRI: A review of publicly available datasets to guide efficient image analysis.

Neurooncol Adv. 2025-1-28

[2]
Personalized predictions of Glioblastoma infiltration: Mathematical models, Physics-Informed Neural Networks and multimodal scans.

Med Image Anal. 2025-4

[3]
Radiology and multi-scale data integration for precision oncology.

NPJ Precis Oncol. 2024-7-26

[4]
The limits of fair medical imaging AI in real-world generalization.

Nat Med. 2024-10

[5]
Comprehensive benchmarking of CNN-based tumor segmentation methods using multimodal MRI data.

Comput Biol Med. 2024-8

[6]
Deformable registration of magnetic resonance images using unsupervised deep learning in neuro-/radiation oncology.

Radiat Oncol. 2024-5-21

[7]
Radiomics Beyond the Hype: A Critical Evaluation Toward Oncologic Clinical Use.

Radiol Artif Intell. 2024-7

[8]
Artificial intelligence powered advancements in upper extremity joint MRI: A review.

Heliyon. 2024-3-25

[9]
Patient-Specific, Mechanistic Models of Tumor Growth Incorporating Artificial Intelligence and Big Data.

Annu Rev Biomed Eng. 2024-7

[10]
Public data homogenization for AI model development in breast cancer.

Eur Radiol Exp. 2024-4-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索