Strohmer Beck, Stagsted Rasmus Karnøe, Manoonpong Poramate, Larsen Leon Bonde
SDU Biorobotics, Maersk McKinney Moller Institute, University of Southern Denmark, Odense, Denmark.
Front Neurosci. 2021 Mar 5;15:633945. doi: 10.3389/fnins.2021.633945. eCollection 2021.
Researchers working with neural networks have historically focused on either non-spiking neurons tractable for running on computers or more biologically plausible spiking neurons typically requiring special hardware. However, in nature homogeneous networks of neurons do not exist. Instead, spiking and non-spiking neurons cooperate, each bringing a different set of advantages. A well-researched biological example of such a mixed network is a sensorimotor pathway, responsible for mapping sensory inputs to behavioral changes. This type of pathway is also well-researched in robotics where it is applied to achieve closed-loop operation of legged robots by adapting amplitude, frequency, and phase of the motor output. In this paper we investigate how spiking and non-spiking neurons can be combined to create a sensorimotor neuron pathway capable of shaping network output based on analog input. We propose sub-threshold operation of an existing spiking neuron model to create a non-spiking neuron able to interpret analog information and communicate with spiking neurons. The validity of this methodology is confirmed through a simulation of a closed-loop amplitude regulating network inspired by the internal feedback loops found in insects for posturing. Additionally, we show that non-spiking neurons can effectively manipulate post-synaptic spiking neurons in an event-based architecture. The ability to work with mixed networks provides an opportunity for researchers to investigate new network architectures for adaptive controllers, potentially improving locomotion strategies of legged robots.
历史上,研究神经网络的人员一直专注于两类神经元:一类是易于在计算机上运行的非脉冲神经元,另一类是更符合生物学原理但通常需要特殊硬件的脉冲神经元。然而,自然界中并不存在同质的神经元网络。相反,脉冲神经元和非脉冲神经元相互协作,各自发挥不同的优势。一个经过充分研究的此类混合网络的生物学例子是感觉运动通路,它负责将感觉输入映射为行为变化。这种通路在机器人技术中也得到了充分研究,在机器人技术中,它被应用于通过调整电机输出的幅度、频率和相位来实现有腿机器人的闭环操作。在本文中,我们研究了如何将脉冲神经元和非脉冲神经元结合起来,以创建一种能够基于模拟输入来塑造网络输出的感觉运动神经元通路。我们提出对现有的脉冲神经元模型进行亚阈值操作,以创建一种能够解释模拟信息并与脉冲神经元通信的非脉冲神经元。通过模拟一个受昆虫姿态中发现的内部反馈回路启发的闭环幅度调节网络,证实了该方法的有效性。此外,我们表明,在基于事件的架构中,非脉冲神经元可以有效地操纵突触后脉冲神经元。处理混合网络的能力为研究人员提供了一个机会,来研究适用于自适应控制器的新网络架构,这可能会改进有腿机器人的运动策略。