Suppr超能文献

Q矩阵锚定混合拉施模型

The Q-Matrix Anchored Mixture Rasch Model.

作者信息

Tseng Ming-Chi, Wang Wen-Chung

机构信息

National University of Tainan, Tainan, Taiwan.

The Education University of Hong Kong, Tai Po, Hong Kong.

出版信息

Front Psychol. 2021 Mar 4;12:564976. doi: 10.3389/fpsyg.2021.564976. eCollection 2021.

Abstract

Mixture item response theory (IRT) models include a mixture of latent subpopulations such that there are qualitative differences between subgroups but within each subpopulation the measure model based on a continuous latent variable holds. Under this modeling framework, students can be characterized by both their location on a continuous latent variable and by their latent class membership according to Students' responses. It is important to identify anchor items for constructing a common scale between latent classes beforehand under the mixture IRT framework. Then, all model parameters across latent classes can be estimated on the common scale. In the study, we proposed Q-matrix anchored mixture Rasch model (QAMRM), including a Q-matrix and the traditional mixture Rasch model. The Q-matrix in QAMRM can use class invariant items to place all model parameter estimates from different latent classes on a common scale regardless of the ability distribution. A simulation study was conducted, and it was found that the estimated parameters of the QAMRM recovered fairly well. A real dataset from the Certificate of Proficiency in English was analyzed with the QAMRM, LCDM. It was found the QAMRM outperformed the LCDM in terms of model fit indices.

摘要

混合项目反应理论(IRT)模型包含潜在亚群体的混合,使得亚群体之间存在质性差异,但在每个亚群体内部,基于连续潜在变量的测量模型是成立的。在这个建模框架下,根据学生的回答,学生既可以通过他们在连续潜在变量上的位置来表征,也可以通过他们的潜在类别归属来表征。在混合IRT框架下,事先为构建潜在类别之间的共同量表确定锚定项目很重要。然后,可以在共同量表上估计所有潜在类别中的模型参数。在这项研究中,我们提出了Q矩阵锚定混合Rasch模型(QAMRM),包括一个Q矩阵和传统的混合Rasch模型。QAMRM中的Q矩阵可以使用类别不变项目,将来自不同潜在类别的所有模型参数估计置于一个共同量表上,而不考虑能力分布。进行了一项模拟研究,发现QAMRM的估计参数恢复得相当好。使用QAMRM和LCDM对来自英语能力证书的真实数据集进行了分析。结果发现,在模型拟合指数方面,QAMRM优于LCDM。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bffa/7969527/8d40d4debb86/fpsyg-12-564976-g001.jpg

相似文献

1
The Q-Matrix Anchored Mixture Rasch Model.
Front Psychol. 2021 Mar 4;12:564976. doi: 10.3389/fpsyg.2021.564976. eCollection 2021.
2
Mixture IRT Model With a Higher-Order Structure for Latent Traits.
Educ Psychol Meas. 2017 Apr;77(2):275-304. doi: 10.1177/0013164416640327. Epub 2016 Apr 1.
4
Investigating the Impact of Item Parameter Drift for Item Response Theory Models with Mixture Distributions.
Front Psychol. 2016 Feb 24;7:255. doi: 10.3389/fpsyg.2016.00255. eCollection 2016.
5
A Note on Parameter Estimate Comparability: Across Latent Classes in Mixture IRT Modeling.
Appl Psychol Meas. 2015 Mar;39(2):135-143. doi: 10.1177/0146621614549651. Epub 2014 Sep 15.
6
The Impact of Non-Normality on Extraction of Spurious Latent Classes in Mixture IRT Models.
Appl Psychol Meas. 2016 Mar;40(2):98-113. doi: 10.1177/0146621615605080. Epub 2015 Sep 22.
7
A generalized longitudinal mixture IRT model for measuring differential growth in learning environments.
Behav Res Methods. 2014 Sep;46(3):823-40. doi: 10.3758/s13428-013-0413-3.
8
An introduction to mixture item response theory models.
J Sch Psychol. 2017 Feb;60:25-40. doi: 10.1016/j.jsp.2016.01.002. Epub 2016 Apr 16.
9
Rasch Mixture Models for DIF Detection: A Comparison of Old and New Score Specifications.
Educ Psychol Meas. 2015 Apr;75(2):208-234. doi: 10.1177/0013164414536183. Epub 2014 Jun 22.
10
Rasch Model Parameter Estimation in the Presence of a Nonnormal Latent Trait Using a Nonparametric Bayesian Approach.
Educ Psychol Meas. 2016 Aug;76(4):662-684. doi: 10.1177/0013164415608418. Epub 2015 Oct 12.

本文引用的文献

1
A Note on Parameter Estimate Comparability: Across Latent Classes in Mixture IRT Modeling.
Appl Psychol Meas. 2015 Mar;39(2):135-143. doi: 10.1177/0146621614549651. Epub 2014 Sep 15.
2
Efficient Models for Cognitive Diagnosis With Continuous and Mixed-Type Latent Variables.
Appl Psychol Meas. 2015 Jan;39(1):31-43. doi: 10.1177/0146621614524981. Epub 2014 Apr 14.
3
Anchor Selection Strategies for DIF Analysis: Review, Assessment, and New Approaches.
Educ Psychol Meas. 2015 Feb;75(1):22-56. doi: 10.1177/0013164414529792. Epub 2014 Apr 21.
5
A multicomponent latent trait model for diagnosis.
Psychometrika. 2013 Jan;78(1):14-36. doi: 10.1007/s11336-012-9296-y. Epub 2012 Dec 6.
6
Hierarchical diagnostic classification models: a family of models for estimating and testing attribute hierarchies.
Psychometrika. 2014 Apr;79(2):317-39. doi: 10.1007/s11336-013-9362-0. Epub 2014 Jan 30.
7
A general diagnostic model applied to language testing data.
Br J Math Stat Psychol. 2008 Nov;61(Pt 2):287-307. doi: 10.1348/000711007X193957. Epub 2007 Mar 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验