Suppr超能文献

一种用于基因组预测的堆叠集成学习框架。

A Stacking Ensemble Learning Framework for Genomic Prediction.

作者信息

Liang Mang, Chang Tianpeng, An Bingxing, Duan Xinghai, Du Lili, Wang Xiaoqiao, Miao Jian, Xu Lingyang, Gao Xue, Zhang Lupei, Li Junya, Gao Huijiang

机构信息

Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.

出版信息

Front Genet. 2021 Mar 4;12:600040. doi: 10.3389/fgene.2021.600040. eCollection 2021.

Abstract

Machine learning (ML) is perhaps the most useful tool for the interpretation of large genomic datasets. However, the performance of a single machine learning method in genomic selection (GS) is currently unsatisfactory. To improve the genomic predictions, we constructed a stacking ensemble learning framework (SELF), integrating three machine learning methods, to predict genomic estimated breeding values (GEBVs). The present study evaluated the prediction ability of SELF by analyzing three real datasets, with different genetic architecture; comparing the prediction accuracy of SELF, base learners, genomic best linear unbiased prediction (GBLUP) and BayesB. For each trait, SELF performed better than base learners, which included support vector regression (SVR), kernel ridge regression (KRR) and elastic net (ENET). The prediction accuracy of SELF was, on average, 7.70% higher than GBLUP in three datasets. Except for the milk fat percentage (MFP) traits, of the German Holstein dairy cattle dataset, SELF was more robust than BayesB in all remaining traits. Therefore, we believed that SEFL has the potential to be promoted to estimate GEBVs in other animals and plants.

摘要

机器学习(ML)可能是解释大型基因组数据集最有用的工具。然而,目前单一机器学习方法在基因组选择(GS)中的性能并不理想。为了改进基因组预测,我们构建了一个堆叠集成学习框架(SELF),整合了三种机器学习方法,用于预测基因组估计育种值(GEBVs)。本研究通过分析三个具有不同遗传结构的真实数据集,评估了SELF的预测能力;比较了SELF、基础学习器、基因组最佳线性无偏预测(GBLUP)和贝叶斯B的预测准确性。对于每个性状,SELF的表现都优于基础学习器,基础学习器包括支持向量回归(SVR)、核岭回归(KRR)和弹性网络(ENET)。在三个数据集中,SELF的预测准确性平均比GBLUP高7.70%。除了德国荷斯坦奶牛数据集的乳脂率(MFP)性状外,SELF在所有其他性状上比贝叶斯B更稳健。因此,我们认为SEFL有潜力在其他动植物中推广用于估计GEBVs。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be6f/7969712/5918ff52bdd2/fgene-12-600040-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验