Surachman Lutfi Mulyadi, Kaka Sanlin I, Al-Shuhail Abdullatif
Geoscience Department, College of Petroleum Engineering and Geoscience, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia.
Sci Rep. 2025 Jul 1;15(1):21551. doi: 10.1038/s41598-025-06332-y.
In this study, we focused on improving acoustic impedance (AI) in seismic exploration. AI is a crucial parameter estimated by multiplying the density of a material by the velocity of an acoustic wave passing through it. A low AI in sandstones and carbonates often indicates high porosity, which enhances hydrocarbon accumulation. Accurate AI estimation is thus critical for reliable hydrocarbon exploration. To refine the AI estimation, we used stacking and voting regression algorithms, with depth, two-way travel time (TWTT), and nine seismic attributes as inputs. All models were implemented using scikit-learn . The VStaR model achieved superior predictive performance ([Formula: see text]= 0.9973) and yielded a more accurate fitting parameter (a = 0.1584) in the acoustic impedance-porosity transformation compared to the VSR ([Formula: see text]= 0.9775, a = 0.1583). The VSR approach made the voting of a top-performing base model with two less predictive base models, as used in the existing literature. Relative to the true and BLIMP-derived impedance, the fitting accuracy followed the order of true > VStaR > VSR > BLIMP. While VStaR required longer computation time (≈ 400 s), it reduced RMSE by 14.74% compared to the top-performing base model. VStaR outperformed all evaluated models based on MSE, RMSE, and [Formula: see text] metrics. The novelty of the VStaR method based on hyperparameters lies in its superior performance in obtaining a more precise prediction of acoustic impedance compared to the VSR and conventional BLIMP method, potentially improving the effectiveness of hydrocarbon exploration in Illam carbonate dataset.
在本研究中,我们专注于提高地震勘探中的声阻抗(AI)。声阻抗是通过将材料的密度乘以穿过该材料的声波速度来估算的一个关键参数。砂岩和碳酸盐岩中的低声阻抗通常表明高孔隙度,这有利于油气聚集。因此,准确的声阻抗估算对于可靠的油气勘探至关重要。为了优化声阻抗估算,我们使用了叠加和投票回归算法,将深度、双程旅行时间(TWTT)和九个地震属性作为输入。所有模型均使用scikit-learn实现。与VSR([公式:见原文]=0.9775,a = 0.1583)相比,VStaR模型在声阻抗-孔隙度转换中实现了卓越的预测性能([公式:见原文]=0.9973),并产生了更精确的拟合参数(a = 0.1584)。VSR方法采用了现有文献中使用的由两个预测性稍弱的基础模型对表现最佳的基础模型进行投票的方式。相对于真实阻抗和基于BLIMP得出的阻抗,拟合精度遵循真实> VStaR > VSR > BLIMP的顺序。虽然VStaR需要更长的计算时间(约400秒),但与表现最佳的基础模型相比,它将均方根误差(RMSE)降低了14.74%。基于均方误差(MSE)、均方根误差和[公式:见原文]指标,VStaR优于所有评估模型。基于超参数的VStaR方法的新颖之处在于,与VSR和传统的BLIMP方法相比,它在获得更精确的声阻抗预测方面具有卓越性能,这可能会提高伊拉姆碳酸盐岩数据集中油气勘探的有效性。